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Informal Summary of Related Work

• Starting polynomial → Generated as sum of products

• Polynomial Simplification Sequence (PROOF). Ex:

• ENDPOINT setting (baseline): Output simplified polynomial in one shot.
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We explore an approach to generate human friendly step-by-step solutions 
to math problems using transformers. We try out our approach on the toy 
problem of simplifying polynomials.
Motivation:
• Recent success of transformers on solving math tasks in end-to-end 

manner [1, 2]
• Recent success in step-wise deduction on logic tasks [3, 4, 5]
• Opaqueness of end-to-end models to probing how they work and where 

they might not. [6]
Main Results (on polynomial task):
• Stepwise solvers could usually outperform end-to-end model, while 

training on similar number of datapoints.
• It significantly helped to offload arithmetic to external calculators while 

using transformers for symbol manipulation and deducing solution steps.
• In many cases one can define a reasonable curriculum [7, 8] for learning 

math tasks. Using such a curriculum also greatly boosted performance.

Main task metrics:
• Proof Accuracy: Compared against ENDPOINT baseline accuracy.

• Step-wise Error Rate: 
Errors classified on basis of simplification step type (FAC, MUL, SUM).

Analyzed performance across multiple dimensions of task complexity:
Increasing number of variables: 1VAR vs 2VAR
Increasing coefficient range:  SMALL vs MEDIUM vs LARGE COEFF
Increasing degree of terms: MEDIUM COEFF vs MEDIUM DEGREE
Increasing number of terms: MEDIUM COEFF vs MEDIUM TERMS
Maxing out everything at once: MEDIUM COEFF vs NO BACKTRACK

• Generating proofs for more complex math tasks like inequalities [9] and 
differentiation.

Math Tasks: 
One shot answers 
No search 
Synthetic datasets

Logic Tasks: 
Stepwise proofs
Search over proof tactics
Synthetic and Real 
datasets

Our Setting:
Math Task
Stepwise solution
Some notion of search
Synthetic dataset

Transformers on complex symbolic tasks

• Complex tasks often require multiple steps

• Complex mathematical tasks often have well-defined sub-tasks

Problem: Along-with the final solution, can we also “show” 
intermediate steps to reach the solution?

Problem: Which sub-tasks Transformers don’t generalize 
on automatically? What are possible solutions?

Problem Setup

Experiments & Task Metrics

Interesting Approaches

Experimental Results

• Most errors occur in multiplication step. This motivated the symbolic 
calculator setting.

• Symbolic calculator setting beat ENDPOINT baseline proof accuracy by 
~10% in LARGE COEFF and NO BACKTRACK config.

• Curriculum Learning provided gain of ~10% on LARGE COEFF and ~20% 
on NO BACKTRACK config over vanilla transformer implementation. 

Additional Observations:
• As expected, longer proofs lead to poor proof accuracy.
• Greedy decoding performs better than beam search.

Future Work
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