
Beyond the Tactic-State Automaton
Daniel Selsam

Microsoft Research

Overview

Most prior work applying machine learning to higher-
order theorem proving has adopted the tactic-state
automata idiom in which the ML agent maps tactic-
states to tactic-state transformations (i.e. tactics).
This approach is appealing in its simplicity but suf-
fers many limitations. We propose instead defining
search spaces using nondeterministic tactics and dis-
cuss several ways of connecting them to ML oracles.

Tactics

A tactic-state is a list of goals, where each goal is a
sequent, i.e. a list of hypotheses and a goal to be
proven. A tactic is an arbitrary (functional) pro-
gram that can read and write to a tactic-state, and
that may also fail. Like regular programs, tactics
can call each other, take each other as functions, de-
velop their own internal datastructures, return values
of arbitrary types, and in general can perform a lot of
work that is not made visible as modifications to the
tactic-state. Tactic frameworks are designed to sup-
port two very different use-cases: interactive mode,
in which users execute pre-written tactics to observe
their effect on the tactic-state, and automation mode,
in which users implement (potentially sophisticated)
tactics that may be used later in interactive mode or
be run on goals in an off-line manner.

Tactic-State Automata

In the tactic-state automata idiom, an ML agent tries
to prove theorems in interactive mode, i.e. by map-
ping tactic-states to tactics which are then executed
to return new tactic-states. There happens to exist
many pre-written tactics suitable for interactive mode,
and the tactic-state automata idiom may be sufficient
to learn how to mix, match, and instantiate these pre-
written tactics in better ways. However, this approach
is fundamentally limited by the set of atomic tactics it
happens to have access to. Humans write new tactics
all the time that are not merely sequences of existing
tactics, and these tactics cannot be expressed in the
tactic-state automata idiom. It can also be challeng-
ing to write these tactics without the help of ML, since
they often require heuristics.

Nondeterministic Tactics

We propose an alternative to tactic-state automata:
nondeterministic tactics. With tactic-state au-
tomata, the ML agent sits above the tactics and se-
lects tactics to execute. In contrast, nondeterministic
tactics sit above the ML and query the ML for heuris-
tic guidance at nondeterministic choicepoints. The
ML’s job is to execute these nondeterministic tactics
by deciding at runtime how to instantiate the nonde-
terminism.

Choice

We achieve nondeterminism by adding a new primi-
tive, choose, to a tactic language that selects from a
finite set of candidates of arbitrary type. There are
countless variations of choose; for example, we can
add a second primitive choose-string that samples a
string from a language model and then tries to parse
it as a tactic. See the accompanying paper for a gen-
eral way of adding nondeterminism to any monadic
computation.

Examples

Tactic-state automaton:
def tacticStateAutomata : Tactic Unit :=

while goalsRemaining do
let tac <- choose tactics
tac

Solving inequalities by contorting subterms to match
known theorems:
def simpleInequalitySolver : Tactic Unit :=

while goalsRemaining do
let thm <- choose standardDozen
let t <- choose subtermsOfGoal
makeLookLike t (lhs thm)
rewrite thm at t
simp

Solving geometry problems by adding auxiliary points
that empirically satisfy desired properties:
def simpleGeoSolver : Tactic Unit := do

let diagram <- buildDiagram
while goalsRemaining do

if goalHasVariables then
let points <- chooseFromDiagram diagram
instantiate points

let thm <- choose geoTheorems
apply thm

Machine Learning

Like tactic-state automata, nondeterministic tactics
generally induce extremely challenging search spaces.
We believe that ML is a promising approach for
searching these spaces more efficiently.

Challenge: What to show ML?

A nice feature of tactic-state automata is that an em-
bedding of the tactic-state datastructure alone can
serve as a precise prompt for an ML oracle. Unfor-
tunately, the situation is more complicated for nonde-
terministic tactics, since choicepoints may have rele-
vant runtime state and differing downstream compu-
tations. For example, consider the simple inequality
solver. When choosing the subterm t of the goal, it
is necessary to consider, in addition to the goal it-
self, which thm was selected beforehand and what the
downstream code plans to do with t and thm. We now
survey a few mutually compatible options for how to
condition an ML oracle.

Explicit Prompts

The choose primitive may be extended to take a piece
of data representing a user-specified prompt represent-
ing the relevant information about this particular choi-
cepoint. This is the approach taken for tactic-state
automata, and as discussed above, in that case this
prompt suffices since the past is irrelevant and the
downstream computations are the same for all choice-
points. It may not be clear how to design an adequate
prompt in general. There is a large design space: a
prompt could even be in natural language.

Choice Summaries

The choose primitive may also be extended to take
a list of pairs, where the second element of the pair
is a summary embedding of the choice in question.
For example, when choosing from a list of lemmas,
the names and types of the lemmas may serve as the
summaries that are passed to the ML oracle. For other
choicepoints it may not be obvious how to summarize
the choices, e.g. when choosing among other nonde-
terministic tactics.

Pseudo Environments

The tactic-state could be extended to include its own
(pseudo) environment mapping identifiers to stacks
of arbitrary (embeddable) datatypes, for the purpose
of enriching the explicit prompts. The bookkeeping
could be hidden as much as possible by syntactic
sugar. The let construct could be sugar for first push-
ing the value to the pseudo environment, and then
popping it when the variable goes out of scope. Ev-
ery function call that may make a nondeterministic
choice could first create a new local environment and
then restore the old one upon exiting.

Metaprogramming

The last approach we consider seems the most prin-
cipled on paper: use metaprogramming to directly
inspect and embed all relevant information for ev-
ery choice automatically. Specifically, the ML-friendly
prompt for a choice can be an embedding of the down-
stream code yet to execute along with the subset of
the current environment that will be inspected down-
stream. The feasibility of this approach depends heav-
ily on the details of the language being extended. In
Python, the inspect and dis modules make it rela-
tively straightforward to construct a lossless encoding
of a given choicepoint, by traversing the bytecode for
each choice at runtime and collecting the used symbols
and their values in the process. The accompanying pa-
per describes how we achieved direct choice-inspection
in Lean (version 4), and also reports on the roadblocks
we hit during the process. The summary is that the
generic metaprogramming approach cannot be made
practical without runtime type information, because
without undue care, most choices will contain large
amounts of data that are not worth embedding.

Discussion

Ultimately, we see no silver bullet for guiding arbitrary
nondeterministic tactics in practice. We also do not
see how a tactic-state automaton could employ known
techniques such as building geometry diagrams and
inspecting them to make conjectures. We still consider
it an open problem how to achieve the best of both
worlds, expert strategies and ML.


