
Measuring Coding Challenge Competence with APPS
Dan Hendrycks* Steven Basart* Saurav Kadavath Mantas Mazeika Akul Arora Ethan Guo

Collin Burns Samir Puranik Horace He Dawn Song Jacob Steinhardt

● Benchmarks for natural language understanding and commonsense
reasoning are quickly being solved merely by increasing the size of
the largest transformer models.

● We introduce APPS, a dataset and benchmark for code generation.
APPS focuses on the ability of a model to take problem specifications
in natural language and produce runnable, correct Python code.

● We find that after pretraining on ~30GB of GitHub and fine-tuning
on the APPS training set, accuracy of GPT-2 1.5B on the APPS test
set is 2.1%, indicating much room for improvement.

● However, qualitative analysis of generated code shows that models
can output code that seems reasonable at first glance.

● https://github.com/hendrycks/apps

Introduction

The APPS Dataset
The Automated Programming Progress Standard, abbreviated APPS
consists of 10,000 programming exercises in total, with over 100,000 test
cases for checking solutions, and over 250,000 ground-truth solutions
written by humans. The exercises are split evenly into training and test
sets, with 5,000 exercises each.

To measure the correctness of generated solutions, we also collected
102,843 test cases, with a mean of 20.6 test cases per problem and a
median of 10 test cases per problem. The average length of a problem
across the training and test sets is 279.5 words. Problems were
standardized by difficulty into three different levels: “Introductory”,
“Interview”, and “Competition”. The test set contains 1,000 introductory
problems, 3,000 interview problems, and 1,000 competition problems.

Computational Metrics
To obtain a comprehensive evaluation of code generation ability, we use
the large bank of test cases provided with APPS. This enables a rigorous
evaluation of generated code via the following metrics.

Accuracy. To compute computational accuracy, we run the code
generated by the model on every test case of every exercise. Accuracy is
then computed by taking the percentage of problems passing all test
cases. This mirrors how humans are evaluated in coding interviews.

Accuracy (w/ Partial Credit). Accuracy with partial credit is computed
as the percentage of test cases passed on a problem, averaged across all
problems. This is a less stringent metric than standard accuracy and
captures our observation that models often implement partial solutions.

Figure 1: Generated code from GPT-2 1.5B. 18/18 test cases pass for the problem on the left and 6/9 pass
on the right. Models were given problems with raw text (including LaTeX code)

Figure 2: A comparison of the APPS dataset to additional datasets for converting between text and code.

Experiments
Pretraining Dataset. In addition to the APPS evaluation dataset, we
also collect a large dataset of Python code on GitHub from
libraries.io/data. We used this dataset for pretraining models before
fine-tuning, then testing, using the APPS dataset.

Model Performance We show Accuracy for all models in Table 1.
We find that larger models consistently perform better on APPS. The
0.1B parameter model achieves 1.24% accuracy, and the 1.5B
parameter model reaches 2.08%. For some problems, models also
generate code that passes all test cases. However, absolute accuracies
are low across all models, suggesting that solving the APPS
benchmark without unreasonable amounts of computational
resources may require algorithmic and architectural improvements.

Examples

Table 1: Accuracy with and without partial credit for the GPT-2 0.1B and 1.5B models. All values are percentages.
Accuracy drops off as the difficulty level increases, and increasing model size by an order of magnitude yields a an
approximate 2x increase in accuracy.

Qualitatively, we find that models can
● Reliably parse inputs provided through STDIN in accordance with instructions
● Often generate code that runs without interpreter errors
● Often generate code that superficially relates to the problem content

https://github.com/hendrycks/apps

