
LIME: Learning Inductive Bias for Primitives of Mathematical
Reasoning

Yuhuai Wu, Markus Rabe, Wenda Li, Jimmy Ba, Roger Grosse, Christian Szegedy

University of Toronto, Vector Institute, Google Research

Contributions

• Providing the first method to design inductive biases in the form of datasets for
mathematical reasoning.

• Demonstrating significant improvements in the reasoning performance of
transformer models on four large mathematical reasoning benchmarks with
negligible extra computation cost.

• By showing how pretraining brings benefits other than learning content
knowledge, disentangling the study of its working mechanism.

Peirce’s Reasoning Primitives

Inspired by the logician Charles Peirce, we consider the following three reasoning
primitives: deduction, abduction, and induction.

• Deduction: the ability to deduce new truths from premise and inference rules.
• Induction: the ability to induce general inference rules from known facts.
• Abduction: the ability to explain the relationship between the evidences and

inference rules.

A simplistic view with Rule, Case and Result

Reasoning Primitives Inference Map
Deduction Rule, Case → Result
Abduction Rule, Result → Case
Induction Case, Result → Rule

LIME: Synthetic Tasks For Reasoning Primitives

We design three sequence to sequence synthetic tasks inspired by the three
reasoning primitives. The idea is to pretrain transformer networks on
these synthetic tasks for learning inductive biases of reasoning.

• Deduct: Source: Rule string and Case dictionary.
Target: Result string.

• Abduct: Source: Rule string and Result string.
Target: Case dictionary.

• Induct: Source: Case dictionary and Result string.
Target: Rule string.

In the following, we describe one simple way to generate those three elements,
though we acknowledge that there are many other possible approaches.

Rule, Case and Result

We require two types of symbols: 1. math symbols, 2. rule symbols. In general,
these symbols can take any forms (e.g., integer representations). We now construct
Rule, Case, and Result in order:

1. Rule is a randomly sampled string that consists of i) rule symbols and ii) math
symbols.

2. Case is a dictionary that represents substitutions. For each rule symbol used in
the Rule string, we sample a random string of random length that consists of
math symbols. This forms a dictionary, whose keys are all rule symbols, and the
values are the corresponding sampled string.

3. Result is the outcome of the substitution. For each rule symbol in the Rule
string, we replace it with the corresponding value stored in the Case dictionary.
This gives rise to the Result string.

An example of Rule, Case and Result

See more variants of the tasks in the paper.

Experimental Protocol

Benchmarks We have selected four tasks to cover various different styles of
interactive theorem provers: The HOL-Light (skip-tree) corpus was created from
very high-level tactic-based proofs, but it is less interpretable than IsarStep’s
declarative style corpus. Lean corpus is based on dependent type theory, and is one
of the most popular theorem provers. We also evaluate the next proof-step
prediction task on the set.mm library of MetaMath, which consists of very granular,
basic proof steps.

LIME Pretraining We generate datasets of our synthetic tasks for pretraining:
Deduct, Abduct, Induct, Mix. We use 44 math symbols and 24 rule symbols.
The length of the Rule string is sampled from 5 to 20, the length of the string for
each substitution (the values of Case dictionary) is sampled from 2 to 8. We used
word-level tokenization for all the tasks. We pretrained the model for 20K updates.
We used the Adam optimizer with learning rate 3 · 10−4. We used a dropout rate of
0.1 and label smoothing with a coefficient 0.1.

Fine-tuning For all the downstream tasks in this section, when loading the
pretrained models for fine-tuning, we do not load in the vocabulary embeddings nor
the output layer weights. We set the maximum number of tokens in a batch to
4096, and accumulated four batches of gradients for one parameter update. We
trained the model for 200K updates. We used the Adam optimizer, and we searched
over the learning rates {3 · 10−4, 7 · 10−4}, and warmup steps {4000, 8000}. We
used a dropout rate of 0.1 and label smoothing with a coefficient 0.1.

Architecture All experiments used the transformer base model, i.e. 512 hidden
size, 2048 filter size, 8 attention heads, 6 layers for both the encoder and decoder.

Results on Four Benchmarks
Table: Test top-8 Accuracy on Skip-Tree HOList (%).

Model Equation completion Hard type inference Missing assumptions Easy type inference

No pretrain 46.3 95.0 41.8 95.9
LIME Deduct 50.3 94.8 47.9 97.0
LIME Abduct 48.4 94.8 46.1 96.3
LIME Induct 44.8 94.9 42.6 96.4
LIME Mix 51.7 95.6 46.1 97.6

(a) Test top-1, top-10 (%) accuracy on the
IsarStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 20.4 33.1
HAT 22.8 35.2
LIME Deduct 24.7 37.7
LIME Abduct 26.7 41.0
LIME Induct 23.9 38.8
LIME Mix 26.9 40.4

(b) Test top-1, top-10 (%) accuracy on the
LeanStep unseen lemma prediction task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 15.8 27.4
LIME Deduct 25.8 38.0
LIME Abduct 26.0 38.6
LIME Induct 25.0 38.2
LIME Mix 29.8 41.8

50K 100K 150K 200K
Training steps

45

50

55

60

65
Validation BLEU: IsarStep

LIME Deduct
LIME Induct
LIME Abduct
LIME Mix
No pretrain

Figure: Validation BLEU along training on the
IsarStep task.

Table: Test top-1, top-10 (%) accuracy on the
MetaMathStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 67.7 76.5
LIME Deduct 68.8 77.4
LIME Abduct 68.8 76.1
LIME Induct 69.9 78.0
LIME Mix 69.1 77.9

We observed a huge gain with LIME pretraining across all four benchmarks.

Ablation Studies

(a) Comparisons to other pretraining tasks on
IsarStep task.

Model Top-1 Top-10

No pretrain 20.4 33.1
LIME Mix 26.9 40.4
Pretrain on MetaMathStep 23.1 35.7
Pretrain on WMT En-De 17.2 30.3

(b) Comparing LIME’s benefits on LSTMs on the
IsarStep Task

Model Top-1 Top-10

LSTM 5.5 11.3
LSTM + LIME Abduct 6.9 14.3
LSTM + attention 12.3 22.7
LSTM + attention + LIME Abduct 13.4 26.3
Transformer 20.4 33.1
Transformer + LIME Abduct 26.7 41.0

Pretraining on Formal Reasoning and Natural Language Tasks We
observe that pretraining on other tasks does not provide as much improvement as
provided by pretraining on LIME tasks.
Does LIME help LSTMs? We observe that the benefits of LIME for LSTM was
shown less than transformer. We hypothesize this is due to transformer’s malleable
self-attention architecture which allows it to learn inductive biases during
pretraining time.


