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ABSTRACT

Imagine you are in a supermarket. You have two bananas in your basket and
want to buy four apples. How many fruits do you have in total? This seemingly
straightforward question can be challenging for data-driven language models, even
if trained at scale. However, we would expect such generic language models to
possess some mathematical abilities in addition to typical linguistic competence.
Towards this goal, we investigate if a commonly used language model, BERT,
possesses such mathematical abilities and, if so, to what degree. For that, we
fine-tune BERT on a popular dataset for word math problems, AQuA-RAT, and
conduct several tests to understand learned representations better.
Since we teach models trained on natural language to do formal mathematics, we
hypothesize that such models would benefit from training on semi-formal steps
that explain how math results are derived. To better accommodate such training,
we also propose new pretext tasks for learning mathematical rules. We call them
(Neighbor) Reasoning Order Prediction (ROP or NROP). With this new model, we
achieve significantly better outcomes than data-driven baselines and even on-par
with more tailored models.

1 INTRODUCTION

Automatically solving math word problems has a long history dating back to the middle sixties Bobrow
(1964). Early approaches were rule-based matching systems that solve the problem symbolically.
Even though there are some impressive symbolic systems that operate in a relatively narrow domain,
the inability to successfully scale them up is sometimes presented as a critique of the good-old-
fashioned AI, or GOFAI Dreyfus et al. (1992). One issue is to create a formalism that covers all the
aspects needed to solve these problems. On the other hand, deep learning LeCun et al. (2015) aims to
develop artificial general intelligence that scales better to various problems.

However, despite many successes in computer vision and natural language processing Devlin et al.
(2018); He et al. (2016); Krizhevsky et al. (2012); Lan et al. (2019); Mikolov et al. (2013), data-
driven methods evade our dream of building a system with basic, every-day, mathematical skills. As
large-scale natural language models become more common Devlin et al. (2018); Brown et al. (2020),
we would expect them to also reason mathematically.

Since natural language understanding also involves symbolic manipulation Liang (2016), we treat
mathematical reasoning as a language understanding and revisit the data-driven paradigm. For that,
we rely on a recent language model, BERT Devlin et al. (2018), and challenge it with math word
problems Ling et al. (2017). Even though such language models have initially shown promising
results, more recent investigation shows they may rely on various biases in their predictions Hendricks
et al. (2018); Brown et al. (2020); Bhardwaj et al. (2020); Kurita et al. (2019). Here, we also follow
that line of investigation and show these models can answer correctly without an understanding of
the rationale behind it.

Furthermore, as directly predicting answers to challenging math problems often requires multiple steps
of reasoning, we show that we can improve BERT’s generalization by exposing it to rationales Ling
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Figure 1: Architectures for different methods. We use shared
architecture but we separate question tokens (green blocks)
from rationales (blue blocks) using different segment encod-
ings. For question-answering, we fine-tune the whole model
with a classification layer. We use the embedding that corre-
sponds to the [CLS] token as the input representation.

Figure 2: ROP or NROP with positive (left)
and negative (right) labels. We randomly
swap two rationales and classify if that
change has happened.

et al. (2017); Hendricks et al. (2016); Lei et al. (2016). These are, however, only used during training
akin to a teacher that shows a student a justification for each answer. But then, the student is evaluated
only on the ability to answer these questions during the college exam correctly with no access to
rationales. Finally, to learn a better representation from rationales and to improve the generalization
even further, we introduce novel pretext tasks and corresponding losses, which we name (Neighbor)
Reasoning Order Prediction (ROP or NROP). With that, we achieved significantly better results than
data-driven baselines, even on-par with methods that are more tailored to math-word problems and
the AQuA-RAT dataset.

2 METHODS

We use the following methods, each initialized with BERT-base pre-trained on Wikipedia and Books
Corpus Devlin et al. (2018); Zhu et al. (2015). Note that all use the same number of parameters.
1) BERT-base - we directly fine-tune BERT to predict the correct answer and show its transfer to
math word problems.
2) BERT-AQuA - we use the MLM loss on the AQuA-RAT questions before training to predict
correct answer.
3) BERT-AQuA-RAT - we use the MLM loss on the AQuA-RAT questions and rationales and show
if we can inject knowledge from rationales into BERT.
4) BERT-(N)ROP - we use the MLM loss and the novel (N)ROP loss for coherence prediction
(defined later) and show if we can improve the results by focusing the model on rationales.
We base our architecture on BERT Devlin et al. (2018) that has 12 transformer blocks Vaswani et al.
(2017). As the core, we use the standard configuration described in Devlin et al. (2018). We use three
self-supervised losses. One is the standard Masked Language Modelling (MLM) but extended to
work on rationales. Other two are our new losses, (Neighbour) Reasoning Order Prediction (ROP or
NROP). Figure 1 shows two variants of our models. Note that, during fine-tuning, rationales and all
the self-supervised losses are discarded.

MLM is the Masked Language Modelling Devlin et al. (2018). We randomly mask 15% of the input
tokens by a special token [MASK]. The objective is to predict the masked token using its context
casted as a classification problem over the tokenizer vocabulary.

Interestingly, there are parallels between masking numbers and solving mathematical equations,
where it can be seen as solving the equation with unknown. For example, 2 + [MASK] = 4 becomes
2+x = 4. As a consequence, models during training organically deal with mathematical calculations
without defining a specific loss for mathematics allowing soft transitions between natural and more
formal languages.

ROP is our novel coherence loss. Since rationales are sequences of consecutive reasoning steps, the
order of the execution is critical as shown in Figure 2.

Following this intuition, we introduce Reasoning Order Prediction (ROP) that predicts whether the
order of the rationale steps is preserved. Hence it encourages the network to pay more attention
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Model Accuracy
Random chance 20.0%
LSTM Ling et al. (2017) 20.8%
BERT-base (ours) 28.3(±2.0)%
BERT-AQUA (ours) 29.1(±1.7)%
BERT-AQuA-RAT (ours) 32.3(±1.8)%
BERT-ROP (ours) 35.4(±1.0)%
BERT-NROP (ours) 37.0(±1.1)%

AQuA-RAT Ling et al. (2017) 36.4%
MathQA Amini et al. (2019) 37.9%

Table 1: Comparison of data-driven (first six rows) with two hybrid approaches that use stronger and hence
more specific inductive biases (last two rows). Standard deviation estimates (over random initializations) is
given in parentheses, where we see our losses can reduce the variability slightly.

Number of tokens 650K 1.3M 1.95M 2.6M 3.25M
% AQuA used 20% 40% 60% 80% 100%
BERT-AQuA Accuracy score 28.23% 27.84% 28.63% 28.23% 29.01%
% of AQuA-RAT used 6.66% 13.33% 20% 26.66% 33.33%
BERT-NROP Accuracy score 28.23% 34.11% 29.80% 36.07% 32.55%

Table 2: Accuracy scores conditioned on the number of tokens available for training. We align models trained on
questions with models trained on question with rationales, so that we have comparable number of tokens in both
cases. This shows that training with rationales leads to a better representation. Even better than more questions.

to rationales. The loss is similar to Sentence Order Prediction (SOP) Lan et al. (2019), but ours is
focused on learning of reasoning steps.

NROP is an extension of ROP where two consecutive rationales are swapped making the prediction
(swap or no swap) task more challenging and, hence, it can arguably lead to a better representation as
understanding the correct ordering between neighbor steps is more nuanced.

3 RESULTS

Dataset. We use AQuA-RAT Ling et al. (2017). It has about 100k crowd-sourced math questions
with five candidate answers (one is correct). Each question has a rationale – a step-by-step explanation
of how the answer is computed – that is only available during training. At test time answer predictions
are based on questions. The train set has roughly 100k question-answer-rationale triples, while dev
and test about 250 question-answer pairs each. We observe a highly sensitive relationship between
scores on dev and test sets. we propose an extended dev set consisting of 5000 randomly chosen
samples from the training set extended by the whole dev set. The details are in the appendix.

Main results. Table 1 shows our main results. We see that our method is the state-of-the-art among
the models with minimal inductive biases and is very competitive to the other two models that are
more specific to handle word math problems (e.g., requires programs). Moreover, even though
BERT is already a stronger model than LSTM, it is better to use its MLM pretext task and loss on
the AQuA-RAT questions (BERT-AQuA) or even better on questions and rationales (BERT-AQuA-
RAT). However, models with our novel coherence prediction losses can better learn from rationales
(BERT-ROP and BERT-NROP).

Rationales. We hypothesize that rationales contain more information and are more useful for
training than questions. To measure that, we want to compare training on the same amount of training
data comprised only of questions to the training on questions with rationales. We have estimated
that rationales have 1.71 times more tokens than questions. This means that a question combined
with rationale has around 3 times more tokens than just a question. We want to prove that rationales
contain more information than question. This means that if our hypothesis is valid, training on 20%
questions and rationales should give better results than training on 60% questions (counting the
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Figure 3: BERT and BERT+NROP embeddings. Colours represent different operators in rationales (T-SNE).
BERT+NROP embeddings better separate operators.

number of tokens). We therefore created samples of respective sizes of just questions and questions
combined with rationales. We show our results in Table 2. They confirm our hypothesis that more
questions do not necessarily help in learning a better representation. On contrary, incorporating
rationales can be more helpful.

Embeddings. To better understand the difference between BERT and BERT+NROP, we analyze
theirs embeddings. For our analysis, we sample 2500 questions with a single operator in rationales,
and next we visualise them with T-SNE Van der Maaten & Hinton (2008). We show both in Figure 3.
We observe that BERT+NROP embeddings preserve more information about different operators.

Permutation consistency. Random guessing on AQuA-RAT yields 20%. For that and to separate
from other questions that were solved by chance, we have constructed a new evaluation task –
permutation consistency test – where each question gets 5 answers at different positions. Table 3a
shows our procedure. Here, models only score a single point if they solve all 5 questions correctly.
Hence, random chance is 0.032% in such experiments. Table 3b shows our results. BERT+NROP
solves almost three times as many questions as BERT. Additionally, further inspection shows
that BERT relies on choosing the answers that most stand out, e.g., numbers ending with zeros
or floats while every other option is an integer. We didn’t observe that simple patterns with
BERT+NROP. Questions solved by BERT+NROP usually contain one or two operations and show
that BERT+NROP better understands the problem. Below, we exemplify two math problems solved
by both models.
Example of a problem solved by BERT+NROP: 8 man work for 6 days to complete a work. How many men
are required to complete same work in 1/2 day?
Answers: A)93, B)94, C)95, D)96, E)97
Correct Option: D
Example of a problem solved by BERT A ship went on a voyage. After it had traveled 180 miles a plane
started with 10 times the speed of the ship. Find the distance when they meet from starting point.?
Answers: A)238, B)289, C)200, D)287, E)187
Correct Option: C

Drop from 37.0% to 11.02% (Table 3b) suggests that models rely strongly on the order of answers.
To reduce such a bias, we test several permutation invariant losses.

1) AUG. We sample randomly 25 permutations of all the possible answers and use them during
training. Original ordering is not used, so there is no order bias. This method can be seen as a data
augmentation technique.
2) SEP-NC. The original models are trained on a 5-class classification task, where we build the
representation by using questions and all the candidate answers, i.e., BERT(Q||P ). Here, || denotes
concatenation, Q is the question and P represents the sequence of all answers. In SEP-NC, we
block the path between all the candidate answers and the BERT-base. Next, we use a late-fusion
to predict if the given candidate answer matches with the question. That is, we use the following
formulation f(BERT(Q)||BERT(C)), where C ∈ P is a single candidate answer and f is a multi-
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Original question
How much is 27 / 3 A)13 B)9 C)3 D)12 E)17

Generated questions
How much is 27 / 3 A)9 B)13 C)3 D)12 E)17
How much is 27 / 3 A)13 B)9 C)3 D)12 E)17
How much is 27 / 3 A)13 B)3 C)9 D)12 E)17
How much is 27 / 3 A)13 B)12 C)3 D)9 E)17
How much is 27 / 3 A)13 B)17 C)3 D)12 E)9

(a) Our generation method for the permutation consis-
tency test. Models get a point only if they solve all them.

Model Score

Random chance 0.032%
BERT 4.33%
BERT+NROP 11.02%
BERT AUG 13.4%
BERT+NROP AUG 19.7%
BERT SEP-NC 15.0%
BERT+NROP SEP-NC 22.7%
BERT SEP-C 16.1%
BERT+NROP SEP-C 23.9%

(b) Our results for the permutation consistency test.

layer perception (with two layers). At test time, the model is prompted to score all five candidate
answers and select the one with the highest score. Appendix material has more information about
this method.
3) SEP-C. As models trained with SEP-NC do not have access to all the possible answers, their biases
to answer positions are significantly reduced. However, these models cannot compare each answer to
all other candidate answers. Here, we use the following formulation f(BERT(Q||P )||BERT(C))
to measure the compatibility of the input (question Q and all the candidate answers P ) with the
given candidate answer C ∈ P . Moreover, we also reset the positional encoding between every
possible answer in P . In such a way, we hypothesise the network can, on the one hand, learn a less
biased representation, and on the other hand, exploit relationship between the candidate answers.
Table 3b shows SEP-NC and SEP-C significantly outperform the original model on the permutation
consistency test. We give more details in the supplementary material.

SEP-NC and SEP-C improve results in permutation consistency tests. However, they give similar
results to original methods in accuracy measuring task. They achieve respectively 33.5% (SEP-NC)
and 35.4% (SEP-C).

Questions difficulty. We categorize questions by difficulty for BERT-NROP and BERT. To estimate
a question’s difficulty, we have ranked the candidate answers according to the model’s uncertainties.
For instance, if the correct answer has the 2nd largest probability, we assign to that question difficulty
two. With that, we group questions into 5 difficulty categories, from the easiest: D1, .., D5.
Manual inspection shows that for BERT+NROP: D5 requires additional knowledge or implicitly
defined numbers (e.g., adding first 100 numbers), D4 requires geometry or non-linear equations and
systems, D3 requires solving linear systems with a few basic operations, D2 requires solving simple
equations, and D1 has one or two basic operations with clearly written numbers. We show an example
from each group in the supplementary material. We didn’t observe a similar pattern for BERT with
the exception of the easiest group D1 where the model chooses the answer that is somewhat different
from other candidates. We provide an example of each group in the supplementary material.

Finally, we also compare the difficulty of questions with the difficulty perceived by humans. For
that, we have conducted a small-group human study, where we have asked participants to solve some
AQuA-RAT questions and rate their difficulty. We find a positive correlation between the difficulty
measured by our models (as described above) to the difficulty judged by humans. Details are in the
supplementary material.

Conclusions. We have investigated if BERT Devlin et al. (2018) – a pre-trained, large language
model – can deal with mathematical reasoning. We find that its representation is biased Brown et al.
(2020); Bhardwaj et al. (2020); Kurita et al. (2019) also in mathematics. Our novel pretext tasks and
losses reduce that bias, but the network still finds shortcuts that do not generalize well. We hope our
work will spark interest of the community in developing language models that are more capable of
mathematical reasoning.
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A AQUA-RAT EXAMPLE

Example problem: A starts a business with Rs.40,000. After 2 months, B joined him with Rs.60,000. C joined
them after some more time with Rs.120,000. At the end of the year, out of a total profit of Rs.375,000, C gets
Rs.150,000 as his share. How many months after B joined the business, did C join?
Options: A) 30’, B) 32’, C) 35’, D) 36’, E) 40’
Rationale: Assume that C was there in the business for x months
A : B : C = 40000 ∗ 12 : 60000 ∗ 10 : 120000 ∗ x
= 40 ∗ 12 : 60 ∗ 10 : 120x = 40 : 5 ∗ 10 : 10x
= 8 : 10 : 2x
= 4 : 5 : x
C’s share = 375000 ∗ x/(9 + x) = 150000
=> 375x/(9 + x) = 150
=> 15x = 6(9 + x)
=> 5x = 18 + 2x
=> 3x = 18
=> x = 18/3 = 6
It means C was there in the business for 6 months. Given that B joined the business after 2 months. Hence C
joined after 4 months after B joined
Answer is B
Correct answer: B

AQuA-RAT question is a closed test math word problem with five possible answers given, and one of
them is correct. Single data point consists of Question, Options, Rationale and Correct answer.
Question and Options are used for predicting Correct answer during test time. Rationale is a step
by step derivation of the solution. Steps are separated by a newline token.

In the example above two subproblems are being solved: Finding a ratio between A, B, C shares
(first four steps) and deriving C’s share (steps from 6 to 10). ROP loss by swapping two rows with
50% probability forces model to be aware of the reasoning coherence. Moreover, this example shows
why NROP is a more difficult task than ROP and requires more subtlety. If two rows from the same
subproblem are swapped, the question of guessing whether they were swapped is more difficult than
if it swapped rows from different subproblems.

Extended validation dataset We observe a highly sensitive relationship between dev and test sets
(Figure 4, left), where small changes in the accuracies in the former set can lead to more dramatic
changes at test time. Indeed, the correlation of results between both sets is only 0.082. As the
validation set is quite small, we propose an extended dev consisting of 5000 randomly chosen samples
from the training set extended by the whole dev set. Although not ideal, and the sensitive relationship
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is still present, we have increased the correlation to 0.401. With such a new validation set, we report
37% test accuracy but we can also see that 40% is within the reach. Details are in the appendix in the
(Figure 4, right).

Figure 4: Accuracies for dev and test sets. Green lines show the iteration that maximizes validation accuracy.
The image also shows the sensitivity of relationship between test and the original (left) or our extended (right)
validation set.

B INPUT REPRESENTATION

All BERT variants use the representation that corresponds to a special token [CLS] that we put at the
beginning of the whole input sequence consisting of question tokens followed by rationale tokens,
and in the downstream, question-answering task, rationale tokens are replaced by the answer options.
With that, the classification uses the contextual embedding of [CLS] that captures the entire input.
MLM classifies over the entire vocabulary of possible words while the other two losses use a binary
cross-entropy loss for the predictions.

C TRAINING PROTOCOL

We train all our architectures on AQuA-RAT using the following training phases. In all cases, we
choose our best model based on the performance on the validation set (dev set), and report the final
performance on the test set.

Pre-training. Each model is pre-trained on a large corpus of texts written in natural language sampled
from English Wikipedia and BooksCorpus Devlin et al. (2018); Zhu et al. (2015). We use this as the
base (BERT-base) model that is also used in all other variants of BERT. In practice, we initialize all
the models with the weights using the HuggingFace library Wolf et al. (2019). Our model therefore
has the same number of weights as BERT-base.

Self-supervision. Here, we use our newly introduced losses, where our models use questions and
possibly rationales from the AQuA-RAT dataset. Both questions and rationales use the same word
embeddings but to distinguish between both modalities we use different positional encodings and
segment embeddings. That is, we share the latter among all the question tokens, and separately
among all the rationale tokens. We use dynamic masking Liu et al. (2019). Here, tokens are randomly
masked for each batch. We naturally extend this approach to other losses that we use in this phase.
That is, ROP and NROP negative examples are randomly recreated every k epochs, where k = 2 in
our case.

Fine-tuning is the last training phase. Here, once our models have learnt the representation during
the self-supervised phase, we tune such a representation to the question-answering downstream task.
In this task, our input consists of question tokens and possible answer options. There are five such
options that comes with the dataset. Like other methods, we tread this as a five-class classification
task where the classification head is added on top of the final embedding of the input. We consider
the embedding corresponding to the first (from the left) [CLS] token as such the final representation.

10



1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

D IMPLEMENTATION DETAILS

Thoroughly in our experiments, we use four TITAN V GPUs. We use a multi-gpu setup. In the
pre-training phase, we use batch size equals to four for each GPU device. Therefore the effective
batch size equals to sixteen. We use the learning rate 5 · 10−5 and trained the models for 24 epochs.
In the fine-tuning phase, we use early stopping criteria, based on the accuracy score on the validation
set. We use the following criteria. If the model does not improve the performance in 15 consecutive
epochs, we stop training, and evaluate a model that yields the highest validation performance. We use
ADAM optimizer with learning rate 10−5 and gradient clipping that sets the maximal gradient’s norm
to one. All our settings use the same hyper-parameters but they differ due to the random initialization
of our self-supervised networks (during the self-supervised training phase) and the classification
networks (during the fine-tuning phase). Self-supervision phase takes around 4 days on 4 gpus,
whereas fine-tuning takes 8 hours on single gpu

E PERMUTATION INVARIANT METHODS

In the main paper, we have shown that typical models can use positional biases in achieving answers.
This results in a low permutation consistency score (Table 3 in the main paper). To handle that issue,
we have defined extra variants that do not use positional encodings for the answer options and instead
they rely on the retrieval mechanics where input representations are matched against the candidate
answers. Here, we describe two such variants.

E.1 ORIGINAL METHODS

Original models create an embedding of a sentence extended by possible questions. This embedding
is then transformed by a linear layer to predict the correct answer. That is,

o1 = f1(BERT(Q||P ))

where o1 is a 5-dimensional vector with probabilities for each possible answer, Q is a question,
P are all possible answers, || represents concatenation, f1 is a single fully connected layer from
768-dimensional space to 5-dimensional space with the softmax activation. BERT is a BERT-base
sentence embedding. The same approach is used for BERT+(N)ROP.

E.2 SEP-NC

In SEP-NC and SEP-C, we use separate embeddings for a question and SEParate embedding for a
candidate answer. They differ, however, in the fact that SEP-C has access to all five possible answers,
while SEP-NC has access only to one prompted candidate answer. Therefore NC stands for ”no
candidates”, while C stands for ”candidates”.

We train the SEP-NC model on a binary classification task to predict whether each candidate answer
C is correct. The method produces two embeddings, one for question and another one for a candidate
answer C ∈ P , and next concatenates them. That is,

o2 = f2(BERT(Q)||BERT(C))

where o2 is an estimated probability that C is a correct answer, P is the sequence of all possible
answers, f2 is a single fully connected layer from 1536 (768 * 2) dimensional space to 1-dimensional
space with the sigmoid activation. Note that, all candidate answers are independent of the question.
That is, BERT cannot use positional biases in deriving an answer. At test time, the model is prompted
to score all five candidate answers and select the one with the highest score. We naturally extended
that approach to BERT+ROP and BERT+NROP. Table 3 (the main paper) shows a significant
improvement over the baseline method.

E.3 SEP-C

SEP-NC method could be too restrictive as it does not allow the model to compare against different
answers. Therefore, we propose another approach that 1) alleviate the issue with positional biases,
but 2) can compare between different answer options. We call that approach SEP-C.
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Originally for each token, a positional encoding is assigned based on its position. In SEP-C, before
assigning positional encoding, we artificially reset the position at the beginning of each possible
answer. For example, if possible answers are: a)10, b)20, c)30, d)40, e)50 they are changed into
10; 20; 30; 40; 50 and after the tokenization, we get the following list of tokens: [’1’,’0’, ’;’, ’2’, ’0’,
’;’, ’3’, ’0’, ’;’ ,’4’, ’0’, ’;’, ’5’, ’0’]. Modified positional encoding will assign value based only on the
relative position to the beginning of the current possible answer. Therefore, in the example above,
each ’0’ will receive the same positional encoding, and ’1’ will get the same positional encoding as
’2’, ’3’, and so on.

Formally, we have
o3 = f3(BERT(Q||Pm)||BERT(C))

where Pm is the sequence of all the possible answers but modified as explained above. Note that,
in this formulation, the model can use the information for all the possible answer options, but their
order is not taken into account. Table 3 (the main paper) shows a significant improvement over the
baseline method.

F QUESTION DIFFICULTY

In this section we present an example from each difficulty group for BERT+NROP and BERT. We
have described the grouping procedure in the main paper.

F.1 BERT+NROP

D5: How many ways A boy can reach the top of stairs which contain 10 steps, when he can take either one or

two steps every time?
Answers: A)88, B)89, C)90, D)91, E)92
Correct Answer: B
Model Answer: D

D4: A square piece of cloth is trimmed by 4 feet on one edge to form a rectangular piece, which is then cut
diagonally in half to create two triangles. If the area of each of triangle is 70 square feet, what was the perimeter
(in feet) of the original piece of square cloth?
Options: A)56, B)58, C)60, D)62, E)64
Correct Answer: A
Model Answer: B

D3: Train A leaves a station every 16 minutes and Train B leaves every 17 minutes. If both trains just left the
station simultaneously, how long until they do so again?
Options: A)272 minutes, B)304 minutes, C)190 minutes, D)70 minutes, E)35 minutes
Correct Answer: A
Model Answer: B

D2: 10kg of a mixture contains 30% sand and 70% clay. In order to make the mixture contain equal quantities
of clay and sand how much of the mixture is to be removed and replaced with pure sand?
Options: A)10/7, B)20/7, C)30/7, D)40/7, E)50/7
Correct Answer: B
Model Answer: C

D1: If one third of 3/4 of a number is 21. Then, find the number?
Options: A)84, B)66, C)28, D)19, E)11
Correct Answer: D
Model Answer: D

F.2 BERT

D5: The length of the ribbon was originally 30 cm. It was reduced in the ratio 5 : 3. What is its length now?

Answers: A)18, B)30, C)6, D)15, E)12
Correct Answer: A
Model Answer: B

D4: An electric pole, 14 metres high, casts a shadow of 10 metres. Find the height of a tree that casts a shadow
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of 15 metres under similar conditions.
Options: A)21, B)22, C)20, D)23, E)24
Correct Answer: A
Model Answer: C

D3: A rope 20 meters long is cut into two pieces. If the length of one piece of rope is 3 meters shorter than the
length of the other, what is the length, in meters, of the longer piece of rope?
Options: A)7.5, B)8.9, C)9.9, D)11.5, E)11.7
Correct Answer: D
Model Answer: B

D2: Jerry purchased a 1-year $5,000 bond that paid an annual interest rate of 12% compounded every six
months. How much interest had this bond accrued at maturity?
Options: A)$5102, B)$618, C)$216, D)$202, E)$200
Correct Answer: B
Model Answer: A

D1: I have a money pouch containing Rs. 700. There are equal number of 25 paise coins, 50 paise coins and
one rupee coins. How many of each are there?
Options: A)453, B)651, C)400, D)487, E)286
Correct Answer: C
Model Answer: C

F.3 HUMAN STUDY

We carried an initial human study on the group of 16 volunteers from University of Warsaw. Volunteers
were Mathematics and Informatics students from the Faculty of Mathematics, Informatics and
Mechanics. We asked the participants to solve questions sampled from the AQuA-RAT dataset. We
are interested in the relation between BERTs difficulty, BERT+NROP difficulty and human difficulty.
Therefore to have a full image we would like to have 2 questions for each question difficulty pair,
for example (D1 BERT, D2: BERT+NROP) . However, that would give 25 combinations and 50
questions if we wanted to have 2 questions per combination. That would be too much to ask from a
volunteer participant. In order to reduce the number of questions, we group our 5 difficulty groups
into 3 categories as follows.

• Easy: D1

• Medium: D2 and D3 combined

• Hard: D4 and D5 combined

Because of that we have only 9 possible combinations and by sampling 2 questions from each
combination we still have a feasible number of questions (18).

Apart from solving the question, we asked to rate question difficulty on a scale from 1 (the simplest)
to 10 (the most challenging). In general, our participants were knowledgeable in math and solved all
the questions correctly. With that grouping we now

The average human-rated difficulty for each of 9 combinations is presented in Figure 5. The results
show that the progression of human difficulty is correlated with the difficulty judged by the models.
Additionally, the human difficulty seems to be more sensitive to BERT+NROP difficulty than to
BERTs. In other words, increasing the difficulty of BERT+NROP will increase the human difficulty
more than the increasing difficulty of BERT. This observation fits our previous observations that
BERT+NROP solves the most straightforward questions while BERT is looking for some leaks, like
looking for the roundest answer.

G DISTRIBUTION OF ANSWERS

Table 4 shows the distribution of the answers in the AQuA-RAT Ling et al. (2017) dataset in all
the folds. Imbalance in distributions could potentially be used by models to find easy, shortcut
solutions. For instance, a constant classifier that always choose the first answer (A) gets about 24%
test accuracy.
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Figure 5: The average human-judged difficulty for questions from each model difficulty group.

dataset A B C D E
train 21.03% 22% 22.87% 19.95% 14.15%
dev 27.17% 25.98% 16.93% 19.69% 10.24$
test 24.80% 22.83% 20.87% 18.11% 13.38%

Table 4: Answer distribution in each dataset.

H RELATED WORK

We are inspired by the following research.
BERTology. We use BERT Devlin et al. (2018) as our core. It uses Transformers Vaswani et al.
(2017); powerful neural architectures that applies a trainable function to all the pairs of input em-
beddings. It also uses masking that covers a fraction of the input words and requires the network to
predict the hidden words based on the context. With both ingredients, the meaning (representation)
of a word emerges from the “company it keeps” Firth (1961). In practice, often, such representations
are pre-trained on large textual corpora with no need for annotations, and next fine-tuned on the
downstream tasks. BERT’s strong performance has resulted in the Cambrian explosion of studies of
the inner working mechanisms and various modifications Clark et al. (2019); de Vries et al. (2019);
Lan et al. (2019); Liu et al. (2019); Sanh et al. (2019); Radford et al.; Raffel et al. (2019); Yang et al.
(2019). Finally, our Reasoning Order Prediction (ROP) is inspired by Sentence Order Prediction
(SOP) Lan et al. (2019). However, ROP works with multiple rationale sentences, where by changing
the order we force the network to understand the consecutive “reasoning” steps. We have also further
extended ROP to a more difficult Neighbor Reasoning Order Prediction (NROP).
Language and math. Development psychologists Cocking et al. (1988); Mestre (2013) often argue
for the necessity of learning languages and point out that those with limited language skills are in
danger of under-performing at school. Moreover, it is also believed that language studies involve
discipline in learning and manipulating formal structures, and thus may promote the development of
the organization of thoughts also required in mathematical reasoning. The similarity between linguis-
tic competence and mathematics is especially pronounced when solving math word problems Fuchs
et al. (2006; 2008); Wang et al. (2016). Interestingly, attention appears to be crucial in problem
solving Fuchs et al. (2006); Pasolunghi et al. (1999). Crossley et al. (2017) show that language skills
are correlated with the performance in mathematical tests also among the university students. In
particular, they pointed out that ability to use complex syntactic structures and cohesion devices are
linked to better scores in a blended discrete mathematics course. We take inspiration from all such
studies and decide to build our mathematical model based on language models.
Math word problems. Solving math word problems is a significant component of the mathemat-
ics curriculum and is taught very early, thoroughly, and universally. Such the emphasize is often
motivated by that solving them is among the best predictors of employability, and is considered
as a distinct area of mathematical competence Murnane et al. (2001); Wang et al. (2016). Since
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solving such problems is unique to human intelligence, math word problems are also interesting for
the AI community. This results in various approaches, more traditional symbolic methods, neural
networks, and neuro-symbolic methods. Bobrow (1964); Charniak (1969); Shi et al. (2015); Ling
et al. (2017); Amini et al. (2019); Parisotto et al. (2016); Wang et al. (2018); Zou & Lu (2019) as
well as datasets Ling et al. (2017); Amini et al. (2019); Huang et al. (2016); Saxton et al. (2019)
An interesting approach is proposed in Rabe et al. (2020), in which authors use self-supervised
tasks on parsing trees of formal expressions. This approach requires syntax trees, and hence we
would have to use an external parser. As our goal was to make an end to end model, we did not
experiment with it, but there are no obstacles against using it in symbiosis with our methods. Geva
et al. (2020) also proposes self-supervised training for improving mathematical abilities in language
models. We, however, focused on a data-driven approach to exclude choice biases and therefore
restricted ourselves from using generated data.
Rationales. In human communication, we always expect there is some rationale behind each decision.
Hence, we set the same expectations to our artificial agents. Symbolic or semi-symbolic architectures
naturally produce justifications as a sequence of formulas in some formal language Lane et al. (2005);
Core et al. (2006); Lomas et al. (2012); Johnson; Liang (2016); Malinowski & Fritz (2014). Ideally,
such rationales would also be shared and communicated to us through some language. The latter
approach is especially appealing when applied to black-box neural networks. For instance, Hendricks
et al. (2016) propose a system that classifies the input image as well as it produces a textual explana-
tion on “why this class is suitable for the given image”.
Systems that produce explanations either in the form of the language Ling et al. (2017); Hendricks
et al. (2016), attention Bahdanau et al. (2014); Mnih et al. (2014); Gulcehre et al. (2016); Malinowski
et al. (2018); Xu & Saenko (2016); Yang et al. (2016), phrase selection Lei et al. (2016), distillation
into programs Hajipour et al. (2020), or decision trees Alaniz & Akata (2019) can potentially increase
the transparency of the black-box neural networks. However, most of these approaches create ratio-
nales posthoc where the justification is conditioned on answers or by querying the network. In our
work, we use rationales to learn a finer representation that can potentially lead to better decisions. In
this sense, our technique is conceptually closer to methods that derive answers based on the program
and use rationales paired with questions to guide the program induction process Ling et al. (2017).
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