
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

BEYOND THE TACTIC-STATE AUTOMATON

Daniel Selsam
Microsoft Research
Redmond, WA, USA
daselsam@microsoft.com

ABSTRACT

Most prior work applying machine learning to higher-order theorem proving has
adopted the tactic-state automata idiom in which the ML agent maps tactic-states
to tactic-state transformations (i.e. tactics). This approach is appealing in its sim-
plicity but suffers many limitations. We introduce a new way to define sophisti-
cated search spaces and discuss several ways of connecting them to ML oracles.

1 INTRODUCTION

Although the details differ among systems, generally speaking a tactic-state is a list of goals, where
each goal is a sequent, i.e. a list of hypotheses and a goal to be proven. The goals within a tactic-state
are often independent but may be coupled by shared metavariables, i.e. fixed, not-yet-determined
values that appear in multiple goals. A tactic is an arbitrary (functional) program that can read and
write to a tactic-state, and that may also fail. Like regular programs, tactics can call each other, take
each other as functions, develop their own internal datastructures, return values of arbitrary types,
and in general can perform a lot of work that is not made visible as modifications to the tactic-state.

In the tactic-state automata idiom, an ML agent maps tactic-states to tactics. In light of the general-
ity of tactics described above, it is worth considering why this approach may work at all. The answer
is that tactic frameworks are designed to support two very different use-cases: interactive mode, in
which users execute pre-written tactics to observe their effect on the tactic-state, and automation
mode, in which users implement (potentially sophisticated) tactics that may be used later in interac-
tive mode or be run on goals in an off-line manner. There happens to exist many pre-written tactics
suitable for interactive mode, and the tactic-state automata idiom may be sufficient to learn how to
mix, match, and instantiate these pre-written tactics in better ways. However, this idiom does not
provide assistance in automation mode.

One may argue that the tactic-state automata idiom suffers no practical bound on its power since
most proofs in most formal mathematics libraries have relatively short representations in terms of
a relatively small number of tactic primitives. However, almost every proof in every formal math-
ematics library was already known informally to the formalizer. Even if the pre-written tactics are
sufficient to express proofs of the theorems in question, this does not imply that tree-search in the
action space induced by these primitives is a good way of solving challenging new problems, e.g.
problems arising in the IMO Grand Challenge. Even if this inference would hold in the infinite-data
limit, it seems particularly unjustified in practice given the severe dearth of available training data.

One natural question is: what are humans taught explicitly that tactic-state automata ML are forced
to induce? While humans see only a meager number of proofs, they are explicitly taught many high-
level problem solving strategies. Manifesting these strategies ostensibly requires writing novel,
sophisticated (automation-mode) tactics.1 However, the strategies taught for e.g. solving olympiad
problems are in general so high-level, so ill-constrained, that a natural encoding of them will nec-
essarily be littered with heuristic choices to make. Ideally, machine learning could provide good
heuristics within these tactics, but this requires moving beyond the tactic-state automata idiom. The
rest of this paper considers how this might be achieved.

1One could also co-train language models on descriptions of these strategies, though the plausibility of this
approach has not been established.

1



1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

2 THE SEARCH TRANSFORMER

We now present our main abstraction, which we call the search transformer, in its simplest form. Our
presentation will reference many concepts from functional programming (e.g. monad transformers)
though we will try to explain the relevant parts of each concept we reference.

The search transformer is built on the following three mutually inductive types:2

inductive SearchT (m : Type → Type) (α : Type) : Type
| mk : m (Status m a)

inductive Status (m : Type → Type) (α : Type) : Type
| done : α → Status m a
| choicepoint : ChoicePoint m a → Status m a

structure ChoicePoint (m : Type → Type) (α : Type) := {
choices : List (SearchT m a)

}

Here m : Type → Type is expected to be a monad, which for our present purposes can be inter-
preted as follows: m describes some set of effects such that for all types α, the type m α : Type
represents programs that return elements of type α but that may in addition perform any of the effects
allowed by m. An example is the tactic monad, TacticM, which (as discussed above) allows reading
and writing to a tactic-state object. Thus an element of type SearchT m α is a computation in m
that either returns an element of α as usual (via done) or else returns a list of SearchT m α values
(via choicepoint) representing a set of possible futures to choose among. We define choice xs
to mean SearchT.mk (pure (choicepoint (ChoicePoint.mk xs))), where pure x is the
m α computation that performs no effects and simply returns x.

When m is indeed a monad, SearchT m α is a monad as well. For our present purposes, the im-
portant implication is that we can implement SearchT programs using the convenient do-notation
pioneered by Haskell Jones (1995) and since adopted by other languages including Lean. For ex-
ample, we can write a program that nondeterministically chooses two bools and returns the pair in a
natural way:

def twoBoolsDo : SearchT m (Bool × Bool) := do
let b1 ← choice [false, true]
let b2 ← choice [false, true]
pure (b1, b2)

Extensions. There are countless ways to extend the simple SearchT presented above. There could
also be a primitive for choosing unordered subsets of a set as in Bavishi et al. (2019) or to support
principled decomposition into subgoals (e.g. by tabling as in Selsam et al. (2020b)). There could
also be a primitive for generating a string, generate : String → (String → SearchT m
α) → Status m α, where the string is to be generated by a language model and then parsed in
the downstream computation.

Search. A defining feature of the search transformer is that the search space induced by a SearchT
program is abstracted away from the strategies that one may use to search the space. Thus search
spaces and search strategies can be implemented separately. For example, here is pseudocode3 for a
generic depth-first search:

def dfs (ψ : SearchT m α) : m (Option α) := do
let mut todo := #[ψ]
while todo do
let status ← todo.back
todo := todo.pop

2We use the syntax of the Lean Theorem Prover de Moura et al. (2015) throughout, though due to idiosyn-
cracies in Lean’s metatheory, some additional indirection is required to define SearchT which we omit in this
presentation.

3This pseudocode is simplified only slightly from working code.

2



1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

match status with
| done x => return (some x)
| choicepoint cp => todo := todo ++ cp.choices

return none

We first initialize a (mutable) todo stack with ψ, and as long as the stack is nonempty, we pop an
element from it, run it, and either return the result (if it returns done) or add the new choices to the
stack (if it returns choicepoint). Note that this snippet assumes that any branch-specific state is
made explicit, e.g. by a StateT transformation above SearchT. We can relax this requirement by
allowing m to provide save and restore methods for the part of its state that is branch-specific and
having dfs call them at the appropriate times.

Other non-heuristic strategies are equally straightforward to implement, e.g. random search, breadth-
first search, and iterative deepening. To implement heuristic search (e.g. MCTS) we need a function
that maps ChoicePoints to either policy scores, value estimates, or both:

structure Guess { policy : Vector Float, value : Float }
structure Oracle m a := { ChoicePoint m a → Guess }

The next section discusses several ways that machine learning could provide such an oracle.

3 MACHINE LEARNING

The search transformer as presented in Section 2 provides almost no information for a heuristic
to go on. Specifically, when a search procedure stumbles on a new choicepoint cp, it has no
way to even distinguish the choices, except based on trivialities like their positions in the list. This
is because a ChoicePoint is simply a list of SearchT m α objects, and such objects have no
inspectable structure. We now discuss several possible sources of signal for a learned heuristic.

Explicit prompts. The ChoicePoint type can be extended to take a value of some type σ; this
argument could represent a user-specified prompt describing the choicepoint and so allow learning
a value function σ → R. Note that we used the word prompt rather than observation because it
does not in general suffice to describe only the current state of the user’s datastructures; there may
be relevant information that only exists implicitly on the stack or in the code defining the choices
available at the current choicepoint. It may not be clear how a programmer should create such a
prompt in general.

Explicit choice summaries. The ChoicePoint type can be extended further to take, for each
candidate choice, a corresponding element of type γ that represents some summary of the choice
and so allow learning a policy function σ → γk → Rk. In the tactic-machine-idiom, the sum-
mary of a choice is effectively the string representing the corresponding tactic. Although simple,
choice summaries pose similar issues as explicit prompts do: a choice may represent an arbitrarily
sophisticated computation, and it may not be clear how a programmer should “summarize” it.

Pseudo environments. Additional data could be tracked by the nondeterministic programs in the
form of a (pseudo) environment mapping identifiers to stacks of arbitrary (embeddable) datatypes,
for the purpose of enriching the explicit prompts. The necessary bookkeeping could be hidden as
much as possible by syntactic sugar. The let construct could be interpreted as sugar for first pushing
the value to the pseudo environment, and then popping it when the variable goes out of scope. Every
function call that may make a nondeterministic choice could first create a new local environment
and then restore the old one upon exiting.

Self-contained ML-powered subroutines. Another approach that is complementary to ranking
choices during search is to provide self-contained ML-powered subroutines for various search strate-
gies to call. For example, ML may be used within an information retrieval system that maps goals to
plausibly relevant lemmas without any specific heed as to how the lemmas will actually be used by
a given caller. Many problem solving strategies are parameterized by previously established facts,
and so such an API may provide useful support for a wide range of strategies. A self-contained ML-
powered module that conjectures upper or lower bounds for various terms may be widely applicable

3



1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

as well. ML can also be applied within stand-alone provers for simpler logics, e.g. within superpo-
sition solvers Loos et al. (2017) or SAT solvers Selsam & Bjørner (2019). Of course, an ML-based
prover trained in the tactic-state automata idiom could constitute a useful subroutine as well. More
specialized ML-powered subroutines could also provide value in certain circumstances, e.g. one that
suggests promising auxiliary points for geometry problems. This approach is appealingly modu-
lar and in most circumstances would be best practice; however, modularity can be a double-edged
sword in machine learning, especially when data is scarce, since the more one fragments the data,
the less each model has to train on.

Direct inspection via metaprogramming. The last approach we consider is to use meta-
programming to directly inspect the SearchT m α candidates in order to automatically encode
each one in a form suitable for a machine learning system. This is essentially the approach proposed
in Selsam et al. (2020a), though whereas they built an entirely new type of programming language to
support it, here we consider lightweight approaches to harness similar power within general purpose
languages. The feasibility depends heavily on the details of the language being extended.

In Python, a barebones SearchT program can be approximated as a thunk that either returns a spe-
cial ChoicePoint object or a regular value. In this encoding, the inspect module for inspecting
live objects together with the dis module for disassembling Python bytecode make it relatively
straightforward to construct a lossless encoding of a given choice. Specifically, the bytecode of the
choice (and whatever functions it calls in turn) can be traversed at runtime, and all symbols can
be easily resolved as well. The situation is more complicated in Lean (version 4) since Lean is a
high-performance language whose runtime does not include type information, function names, nor
an environment. Nonetheless we can simulate the Python approach as follows:

1. Create a new inductive type Object to represent runtime objects.

2. Add a new primitive inspect : NonScalar → IO Object that structurally traverses
any non-scalar and produces a corresponding Object. Using the procedure dladdr, it
can resolve function (void *) addresses to (mangled) names.

3. To inspect a non-scalar term x, call inspect (unsafeCast x : NonScalar).

4. To resolve function names appearing in the resulting Object, create a new Lean environ-
ment that imports the necessary modules; then after unmangling the function names, one
can lookup the Lean IR code corresponding to each function referenced in the Object (and
in other functions recursively thereafter).

This approach has a significant disadvantage in Lean compared to explicit prompts for inspecting the
current state itself: a custom, type-aware embedding of the state datastructure itself may be much
more compact than the runtime object that represents it. For example, it is common to show machine
learning models only pretty-printed expressions, which discard troves of irrelevant information from
the original expressions. Similarly, a Lean tactic-state does not just include the list of open goals
but also includes a metavariable context containing information about previously solved goals that
is not relevant for solving the open ones. Neither of these concerns would be significant if there
were runtime type information since the embeddings could be user-defined and type-dependent.
Unfortunately, we do not see how to make the generic metaprogramming approach practical without
runtime type information.

4 DISCUSSION

Ultimately, we see no silver bullet for guiding arbitrary nondeterministic tactics in practice. On the
other hand, we also do not see how a tactic-state automaton could employ known techniques such as
building geometry diagrams and inspecting them to make conjectures. We still consider it an open
problem how to achieve the best of both worlds, expert strategies and ML.

ACKNOWLEDGMENTS

We thank Jesse Michael Han, Ryan Krueger, Leonardo de Moura, Sebastian Ullrich and Patrice
Godefroid for helpful discussions and feedback.

4



1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

REFERENCES

Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. Autopandas: neural-
backed generators for program synthesis. Proceedings of the ACM on Programming Languages,
3(OOPSLA):1–27, 2019.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378–388. Springer, 2015.

Mark P Jones. A system of constructor classes: overloading and implicit higher-order polymor-
phism. Journal of functional programming, 5(1):1–35, 1995.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof
search. arXiv preprint arXiv:1701.06972, 2017.

Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers with unsat-core pre-
dictions. In International Conference on Theory and Applications of Satisfiability Testing, pp.
336–353. Springer, 2019.

Daniel Selsam, Jesse Michael Han, Leonardo de Moura, and Patrice Godefroid. Universal policies
for software-defined mdps. arXiv preprint arXiv:2012.11401, 2020a.

Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. Tabled typeclass resolution. arXiv
preprint arXiv:2001.04301, 2020b.

5


	Introduction
	The Search Transformer
	Machine Learning
	Discussion

