
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

MEASURING CODING CHALLENGE COMPETENCE
WITH APPS

Dan Hendrycks∗
UC Berkeley

Steven Basart*

UChicago
Saurav Kadavath
UC Berkeley

Mantas Mazeika
UIUC

Akul Arora
UC Berkeley

Ethan Guo
UC Berkeley

Collin Burns
UC Berkeley

Samir Puranik
UC Berkeley

Horace He
Cornell

Dawn Song
UC Berkeley

Jacob Steinhardt
UC Berkeley

ABSTRACT

Programming is one of the most broadly applicable skills in modern society. Due
to recent advances in language modeling, training machine learning systems to
generate code has become increasingly appealing. However, it can be difficult to
accurately assess code generation performance, and there has been surprisingly
little work testing and assessing code generation capabilities in a way that is both
flexible and rigorous. To fill this gap, we introduce APPS, a benchmark for code
generation. Unlike prior work in more restricted settings, our benchmark assesses
the ability of language models to take an arbitrary natural language specification
and generate Python code fulfilling this specification. Similar to how companies
assess candidate software developers, we then evaluate models by checking their
generated code on a battery of test cases. Our benchmark includes 10,000 problems,
which range from having simple one-line solutions to being algorithmic challenges
that are difficult even for computer scientists. We fine-tune GPT-2 on both GitHub
and our training set, and we find that while computational accuracy remains low,
current models often generate reasonable guesses and frequently solve simple
problems. As automatic code generation becomes an increasingly possible and
critical application of machine learning over the coming years, our benchmark
can provide an informative measure for tracking progress. Code and the dataset is
available at https://github.com/hendrycks/apps.

“Everybody should learn to program a computer, because it teaches you how to think” – Steve Jobs

1 INTRODUCTION

Computer programming is an extraordinarily general tool supporting much of modern society.
Spanning finance, scientific discovery, entertainment, and more, the applications supported by coding
are vast in scope and highly valuable. The Turing-completeness of programming languages ensures
that almost any cognitive task can, in principle, be automated with a computer. Accordingly, aspiring
programmers study for years to become proficient coders and eventually are able to convert abstract
specifications of diverse cognitive tasks into concrete programs.

In the past few years, large-scale language models have shown promise in generalizing to various
cognitive tasks, including linguistic inference (Wang et al., 2019a), commonsense reasoning (Zellers
et al., 2019; Huang et al., 2019; Bisk et al., 2019), logical deduction (Liu et al., 2020), and general
understanding of many domains of human knowledge (Hendrycks et al., 2021b). However, whether
large-scale language models can reliably write code remains an open question. In qualitative
demonstrations, state-of-the-art systems (Brown et al., 2020) have exhibited impressive coding
ability, completing Python functions into correct programs given only a docstring, but there has been
surprisingly little work on rigorously testing the coding ability of large-scale language models.

∗Equal Contribution.
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Problem Generated Code Test Cases
H-Index

Given a list of citations counts,
where each citation is a
nonnegative integer, write a
function h_index that outputs
the h-index. The h-index is the
largest number h such that h
papers have each least h citations.

Example:
Input: [3,0,6,1,4]
Output: 3

Input:
[1,4,1,4,2,1,3,5,6]

Generated Code Output:
4                      ✓

Input:
[1000,500,500,250,100,
100,100,100,100,75,50,
30,20,15,15,10,5,2,1]

Generated Code Output:
15                     ✓

Figure 1: An example problem from APPS (left) along with possible generated code (middle) and
two example test cases we use to evaluate the generated code (right). Our evaluation framework is
flexible and rigorous, and our dataset contains a diverse set of code generation problems.

Motivated by the need for rigorous evaluation and the potential demonstrated by these models, we
introduce APPS, a benchmark for code generation from natural language specifications. Unlike prior
work on code generation with language models that focuses on pseudocode and translating between
programming languages, we evaluate models on their ability to take specifications given in natural
language and write code that meets these specifications. Thus, we are evaluating models on their
ability to perform language-based program synthesis. This setting mirrors how human coders are
evaluated and provides a highly realistic and economically valuable setting in which to benchmark
models.

APPS enables robust evaluation of models along several dimensions, providing a comprehensive and
clear view of code generation ability. It contains 10,000 programming problems at various levels of
difficulty, ranging from simple introductory problems to complex coding challenges. This highlights
a substantial difference between APPS and prior work on evaluating language model code generation:
APPS evaluates models not only on their ability to understand coding syntax, but also on their ability
to understand task descriptions and devise algorithms to accomplish these tasks. If a model were to
perform well on APPS, this would imply a deep understanding of data structures and programming
techniques, as well as an ability to correctly interpret diverse task specifications.

In most natural language generation problems, high-quality evaluation requires human feedback,
which is expensive. As a result, automatic metrics such as BLEU (Papineni et al., 2002) are often used
to compare methods. For code generation, the objective is to produce correct functionality, enabling
gold-standard evaluations through the use of test cases and error catching. Evaluating code generation
on APPS is facilitated by a large bank of over 100,000 test cases and over 260,000 human-written
solutions. The test cases are specifically chosen to probe correct functionality across the input space,
including edge cases. Combined with the human-written solutions, this gives a complete picture of
model performance in terms of code functionality and similarity to ground-truth solutions.

In experiments with large-scale language models, we evaluate language-based program synthesis
using the APPS benchmark. We find that while current models are often able to write functioning
code with proper syntax, they are unable to reliably generate correct solutions. Performance improves
with scale, and we find that pre-training on an additional 30 GB of Python code from GitHub provides
benefits. However, overall accuracy on test cases remains low. The largest model we evaluate,
with 1.5 billion parameters, only achieves 2.08% accuracy on the test cases. These results position
language-based program synthesis as a challenging testbed for large-scale language models. While
our results show that performance can be reliably improved, new methods may be required to reach
high accuracies at a reasonable budget.

Writing code to meet specifications in natural language is an economically valuable task with
widespread implications should it be solved. With large-scale language models now able to solve
tasks requiring reasoning and critical thinking, it is important to measure how well they perform at
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Problem
You are given a string s = s1s2 . . . sn of length n,
which only contains digits 1, 2,..., 9. A substring
s[l . . . r] of s is a string slsl+1sl+2 . . . sr. A sub-
string s[l . . . r] of s is called even if the number
represented by it is even. Find the number of even
substrings of s. Note, that even if some substrings
are equal as strings, but have different l and r, they
are counted as different substrings. The first line
contains an integer n (1 ≤ n ≤ 65000) — the
length of the string s. The second line contains
a string s of length n. The string s consists only
of digits 1, 2,..., 9. Print the number of even sub-
strings of s.

Problem
You are given a prime number p, n integers
a1, a2, . . . , an, and an integer k. Find the num-
ber of pairs of indexes (i, j) (1 ≤ i < j ≤ n) for
which (ai + aj)(a

2
i + a2j ) ≡ k mod p. The first

line contains integers n, p, k (2 ≤ n ≤ 3 · 105,
2 ≤ p ≤ 109, 0 ≤ k ≤ p − 1). p is guaranteed
to be prime. The second line contains n integers
a1, a2, . . . , an (0 ≤ ai ≤ p − 1). It is guaranteed
that all elements are different. Output a single inte-
ger answer to the problem.

Model Output
n = int(input())
s = input()
ans = 0
for i in range(n):

for j in range(i, n):
if int(s[i:j+1]) % 2 == 0:

ans += 1
print(ans)

Model Output
n, p, k = map(int, input().split())
a = list(map(int, input().split()))
a.sort()
ans = 0
for i in range(n - 1):

for j in range(i + 1, n):
ans += (a[i] + a[j]) % p == k

print(ans)

Figure 2: Model-generated code from GPT-2 1.5B. 18/18 test cases pass for the problem on the left
and 6/9 test cases pass on the right. Note that models were given in problems exactly as they they are
formatted here, which even meant parsing LATEX.

code generation. Our new benchmark facilitates measuring performance in a comprehensive and
rigorous manner. Using APPS, we find that programming is very difficult for modern language
models, but that progress is possible. We hope that our benchmark can provide a clearer picture into
the performance of future large-scale language models at language-based program synthesis.

2 THE APPS DATASET

The APPS dataset consists of data collected from different open-access domains such as Codewars and
Codeforces. The APPS benchmark uses this dataset to mirror the evaluation of human programmers as
they progress from beginner to expert level by posing coding exercises in unrestricted natural language
and evaluating the correctness of solutions. The exercises range in difficulty from introductory to
collegiate competition level and measure coding ability as well as problem-solving.

The Automated Programming Progress Standard, abbreviated APPS, consists of 10,000 programming
exercises in total, with over 100,000 test cases for checking solutions, and over 250,000 ground-truth
solutions written by humans. The exercises are split evenly into training and test sets, with 5,000
exercises each. Each exercise has at least one ground-truth solution and test case, but many exercises
have hundreds of test cases, enabling comprehensive checking of program functionality.

To create the APPS dataset, we manually curated 10,000 programming exercises from open-access
sites where programmers share problems with each other, including Codewars and Codeforces.
Problems are posed as unconstrained natural language specifications of what should be coded. The
APPS dataset has a total of Problems have a mean of 21.6 ground-truth solutions, for a total of
274,045 Python solutions in the APPS dataset.

To measure the correctness of generated solutions, we also collected 102,843 test cases, with a mean
of 20.6 test cases per problem for the test set. Across the training and test sets, average question length
is 279.5 words. Problems were standardized by difficulty into three different levels: introductory
(e.g., get the nth element in a linked list), interview (e.g., Google interviews), and competition (e.g.,
USACO and IOI problems).
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Accuracy Partial Credit Accuracy
Model Introductory Interview Competitive Average Introductory Interview Competitive Average

GPT-2 0.1B 2.40 1.27 0.00 1.24 6.28 7.57 3.74 6.55
GPT-2 1.5B 4.80 1.73 0.40 2.08 9.71 9.60 6.52 9.00

Table 1: Accuracy with and without partial credit for the GPT-2 0.1B and 1.5B models. All values
are percentages. Accuracy drops off as the difficulty level increases, and increasing model size by an
order of magnitude yields a an approximate 2× increase in accuracy.

3 EXPERIMENTS

In this section, we perform experiments to investigate performance on the APPS benchmark using
state-of-the-art Transformer (Vaswani et al., 2017) language models.

3.1 ANALYZING MODEL PERFORMANCE.

Models and Hyperparameters. We assess various sizes of GPT-2 (Radford et al., 2019). The
GPT architecture is especially appropriate for text generation because it is autoregressive, unlike
bidirectional other language models such as BERT (Devlin et al., 2019). GPT-2 also uses a Byte-level
Byte-Pair-Encoding tokenizer, capable of representing arbitrary character sequences. This makes it
straightforward for the model to read and produce code, which can contain important characters not
usually seen in standard text, such as colons and brackets.

Metrics. We show Accuracy and Accuracy with Partial Credit for all models in Table 1. Accuracy
indicates the percentage of generated solutions that pass all test cases. This mirrors how humans
are evaluated in coding interviews. Meanwhile the Accuracy with partial credit is the fraction of all
the test cases passed per problem, averaged across all problems. This is a less stringent metric than
standard accuracy.

Quantitative Results. We find that larger models consistently perform better on APPS. The 0.1B
parameter model achieves 1.24% accuracy, and the 1.5B parameter model reaches 2.08%. For some
problems, models also generate code that passes all test cases (Figure 2). However, absolute accuracies
are low across all models, suggesting that solving the APPS benchmark without unreasonable amounts
of computational resources may require algorithmic and architectural improvements.

Qualitative Output Analysis. We find that models often output solutions that are not unreasonable
even for questions on which they pass zero test cases. For example, in Figure 3, we see that the
1.5B parameter model generates code that is related to the problem statement and makes a plausible
attempt to solve it. This further reinforces the idea that even though this task is challenging, progress
is now starting to be possible.

4 CONCLUSION

As programming is such a broadly useful and valuable skill, it will likely be one of the main
applications of language models over the coming years. However, so far there has been surprisingly
limited work on developing and assessing code generation capabilities.

To address this problem, we introduced a new dataset, APPS, for measuring how well machine
learning models can generate code. Unlike prior work that focused on pseudocode to code generation
or translation between programming languages, our benchmark evaluates how well language models
can generate python code given natural language specifications, making it especially useful and
natural. We can assess models with hundreds of thousands of test cases and example solutions.

We assessed state-of-the-art generative models on our benchmark and found that while overall
performance remains low, models are starting to be able to generate valid code and solve some
very basic programming questions. Moreover, even when they make mistakes they can often output
reasonable-looking code. This suggests that our benchmark is very challenging, but that progress
is starting to be possible on this important problem. As models become more competent at code
generation, APPS can help us track this progress in a detailed and rigorous way.
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Hearthstone Django SPoC NAPS APPS
Programming Language Python Python C++ UAST Python
Test Cases 5 5
Number of Programs 665 18,805 18,356 17,477 260,447
Lines per Program (Avg.) 7.7 1 14.7 21.7 21.6
Number of Exercises 665 18,805 677 2,231 10,000
Text Input Card Text Python Pseudocode Pseudocode Natural Language Problems

Table 2: A comparison of the APPS dataset to existing datasets for converting between text and code.
APPS has over an order of magnitude more ground-truth solutions than previous datasets, test cases
for every problem, and a language-based program synthesis task where models convert unconstrained
natural language specifications into code.

5 APPENDIX

5.1 RELATED WORK

Program Synthesis. Program synthesis is the task of generating a computer program that satisfies
given specifications. Often considered a holy grail of computer science if it were to be solved,
strong program synthesis capabilities would enable a more intuitive, objective-oriented approach
to programming that would save significant amounts of labor. Deductive program synthesis uses
specifications in formal logic to define a search problem. Complex optimization techniques are used
to generate programs satisfying these specifications Alur et al. (2018). Because specifications must
be converted into a formal language, these approaches can be rigid. Inductive synthesis from example
input-output behavior can provide an alternative to formal specification Gulwani et al. (2017), but it is
often hard to full specify behavior with examples, as any machine learning practitioner is well-aware.

An alternative to formal or inductive specification is to specify program behavior in natural language.
This is arguably how human programmers receive specifications, but few works have investigated
whether machine learning methods can do the same. Raza et al. (2015) and Desai et al. (2016) develop
approaches to programming by natural language and demonstrate the generation of short programs
in domain-specific languages. In contrast, we consider open-ended natural language specifications
and general-purpose programming languages. Enabled by recent progress in NLP, we benchmark
large-scale Transformers pretrained on tens of gigabytes on language-based program synthesis using
our new APPS benchmark.

Neural Representations for Code. Deep learning has provided a new avenue into processing and
understanding code and algorithmic structure. Cai et al. (2017) find that incorporating recursion as an
inductive bias in neural networks improves generalization when learning sorting algorithms. Feng
et al. (2020a) gather a dataset of natural language documentation and accompanying code across 6
programming languages. Using this dataset, they demonstrate that a bidirectional Transformer can
perform automatic documentation, even for a programming language not in the training set. Jain
et al. (2020) create a source-to-source compiler that can generate diverse, functionally equivalent
variants of a program. They then use this with a contrastive learning scheme to train models for
various downstream coding tasks, including type inference and code summarization. However, they
do not consider code generation.

Code Generation with Language Models. Language modeling is a compelling tool to use for
code generation, and several works have achieved success generating code with language models in
limited settings. Lachaux et al. (2020) use unsupervised machine translation techniques to translate
functions across programming languages, attaining identical behavior after translation in many
cases. Zavershynskyi et al. (2018) introduce the NAPS dataset for converting pseudocode to code,
obtained by crowdsourcing low-level descriptions of programming exercises, and apply machine
translation techniques to the problem. Kulal et al. (2019) introduce SPoC, a method for converting
pseudocode to code utilizing seq2seq machine translation with an additional search step. To train
SPoC, they collect line-by-line descriptions of C++ programs using Amazon Mechanical Turk. Yu
et al. (2018) introduce the Spider dataset for converting natural language queries into SQL. Wang
et al. (2019c) develop a framework attaining 65.6% exact match accuracy on this dataset. Lu et al.
(2021) introduce the CodeXGLUE benchmark, which unifies a number of published datasets and
evaluates performance with the CodeBLEU metric Ren et al. (2020). Iyer et al. (2018) investigate
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Maximum Pairwise BLEU Accuracy
Model Introductory Interview Competitive Average Introductory Interview Competitive Average
CodeBERT 15.58 8.34 4.39 10.99 0.10 1.01 0.75 0.74
GPT-2 0.1B 20.84 16.00 11.35 17.65 0.41 1.02 0.71 0.77
GPT-2 0.3B 22.15 16.39 12.42 18.47 0.41 1.09 0.49 0.88
GPT-2 1.5B 24.22 17.74 14.95 20.07 0.11 1.53 0.89 1.12

Table 3: Maximum Pairwise BLEU and test case accuracy for each model and difficulty level.

generating Java code from docstrings and evaluate performance with BLEU. The docstrings are often
incomplete specifications of what should be coded and only 14.7 words long on average, e.g. “Convert
mixed case to underscores”. By comparison, problem specifications in our new APPS benchmark are
self-contained and have an average length of 279.5 words. Additionally, APPS contains test cases for
every exercise, enabling a high-quality evaluation of code correctness.

Evaluating Large-Scale Language Models. Modern large-scale language models have demon-
strated impressive capabilities across a variety of text-based tasks. On the SuperGLUE benchmark
Wang et al. (2019b), two models now exceed human accuracy. On many commonsense reasoning
benchmarks, performance is rising quickly (Zellers et al., 2019; Huang et al., 2019; Bisk et al.,
2019). Even in a multitask evaluation of language models across a broad range of human knowledge,
performance is surprisingly high and poised to improve as models are scaled up further Hendrycks
et al. (2021b;a).

With the rapid improvements across numerous benchmarks, finding resilient benchmarks on which
models significantly underperform humans is challenging. The question of whether more data and
more compute is sufficient appears to be answered in the affirmative for most benchmarks that have
been proposed so far. APPS differs from existing benchmarks in that, while performance can be
improved upon, the baseline performance of large-scale models is very low. Thus, APPS allows us to
cleanly separate model performance from that of expert humans.

5.2 FURTHER DATASET DETAILS

5.2.1 PROBLEM FORMATS

Problems in APPS come in two formats, one call-based format and one standard input format:

• Call-Based Format problems generally provide initial starter code, usually in the form of a
function header, and ask for the solution to be provided as the function’s return value.

• Standard Input Format problems generally lack starter code. Instead, the model is only
provided with the problem and must output its answers to the STDOUT stream, such as by
using print statements.

For the call-based format problems, we prompt models using the following inputs:

"\nQUESTION:\n" + q_str + "\n" + starter_code_str + "\n" + "\nUse
Call-Based Format\n\nANSWER:\n"

For both of the above prompts, the variable q_str represents the raw text of the problem statement.
The variable starter_code_str represents the starter code given in the problem definition, or
the empty string if not starter code was provided. For the standard input format problems, we prompt
the model with the input string as before, but we replace “Call-Based Format” with “Standard Input
Format.”

Note that if starter code is given, it is only part of the input. This means that to use the starter code, a
model must learn to copy the starter code at the beginning of its outputted answer in order to get the
question correct.

6 ADDITIONAL DATASET INFORMATION

Dataset Comparison. In the main paper, we compare our dataset to several code translation and
pseudocode-to-code datasets Ling et al. (2016); Oda et al. (2015); Kulal et al. (2019); Zavershynskyi
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Problem
You are given two integers n and m. Calculate the number of pairs of arrays (a, b) such that: the
length of both arrays is equal to m; each element of each array is an integer between 1 and n
(inclusive); ai ≤ bi for any index i from 1 to m; array a is sorted in non-descending order; array b is
sorted in non-ascending order. As the result can be very large, you should print it modulo 109 + 7.
Input: The only line contains two integers n and m (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10). Output: Print one
integer – the number of arrays a and b satisfying the conditions described above modulo 109 + 7.

Model Output
n, m = map(int, input().split())
mod = 10**9+7

fact = [1, 1]
factinv = [1, 1]
inv = [0, 1]

for i in range(2, n+1):
fact.append((fact[-1] * i) % mod)
inv.append((-inv[mod % i] * (mod//i)) % mod)
factinv.append((factinv[-1] * inv[-1]) % mod)

def cmb(n, r, mod):
if (r < 0) or (n < r):

return 0
r = min(r, n - r)
return fact[n] * factinv[r] * factinv[n-r] % mod

print((cmb(n, m, mod) * cmb(m-1, n-1, mod)) % mod)

Figure 3: An example from GPT-2 1.5B. Although the code generated passes 0 test cases, it looks
plausible at first glance.

CodeTrans CONCODE GitHub Java Corpus PY150 APPS
Programming Language Java/C# Java Java Python Python
Test Cases 5 5 5 5
Number of Programs 11,800 104,000 N/A N/A 260,447
Lines per Program (Avg.) 5.4/6.0 26.3 1 1 21.6
Number of Exercises 11,800 104,000 10,000 3,000 10,000
Text Input Java/C# Docstrings Java Python Natural Language Problems

Table 4: A comparison of the APPS dataset to additional datasets for converting between text and
code. APPS has far more ground-truth solutions than all previous datasets, test cases for every
problem, and a language-based program synthesis task where models convert unconstrained natural
language specifications into code.

et al. (2018). In Table 4, we compare to additional datasets on code generation from docstrings, code
translation, and code completion Lu et al. (2021); Iyer et al. (2018); Raychev et al. (2016); Allamanis
& Sutton (2013).

‘Number of Programs’ refers to the number of human-written programs or functions in the dataset,
and ‘Number of Exercises’ refers to the number of tasks that the network must solve. These numbers
can differ in datasets such as APPS with multiple human-written solutions per exercise.

Excluded Keywords. In creating the GitHub pretraining dataset, we exclude the following key-
words to prevent overlap with coding challenge questions similar to those in APPS: ‘atcoder’,
‘coderbyte’, ‘leetcode’, ‘codeforces’, ‘codewars’, ‘hackerrank’, ‘topcoder’, ‘codechef’, ‘checkio’,
‘HackerEarth’, ‘Programmr’, ‘Exercism’, ‘Codier’, ‘PyBites’, ‘Tynker’, ‘CodinGame’, ‘CodeCom-
bat’, ‘usaco’, ‘IOI’, ‘UVA’, ‘ICFP’, ‘EPIJudge’, ‘SPOJ’, ‘UVaOJ’, ‘judge’, ‘interview’, ‘solution’,
‘coding’, ‘code’, ‘problem’, ‘exercise’, ‘challenge’, ‘algo’, ‘practice’, ‘competitive’, ‘program’.

10
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6.0.1 PRETRAINING DATASET

In addition to the APPS evaluation dataset, we also collect a large dataset of Python code on GitHub
from libraries.io/data. We used this dataset for pretraining models before fine-tuning, then testing,
using the APPS dataset.

GitHub repositories that were less than one star were filtered out, as were all repositories matching
certain keywords that would indicate overlap with common programming exercises. The list of
keywords is in the Supplementary Materials. We also discard any GitHub code that contains functions
with the same signatures as functions in the starter code in many of our APPS problems. This leaves
us with 30 GB of Python code. To improve the efficiency of pretraining, we process all Python code
in the pretraining dataset by converting from spaces to tabs, which saves the character conversion
when running model tokenizers.

Pretraining Stage. We start with standard English-text pretrained GPT-2 models from the Hug-
gingface Transformers library (Wolf et al., 2020). We then apply two stages of training. In the first
stage (“Pretraining”), we use the standard autoregressive LM objective on Python code data that we
scraped from GitHub and described in Section 6.0.1.

In order to make sure that pretraining on code for many steps does not cause our models do not forget
how to model standard English text, approximately 10% of data is from Wikipedia, and 5% of our
examples are programming questions and answers from StackOverflow.

Fine-tuning Stage. In the fine-tuning stage, we train on APPS. The task is to predict the entire
coding challenge solution (i.e. Python code), given the problem statement (English text) and the type
of problem (call-based format or standard input format). As before, we train at this stage using the
standard autoregressive language modeling objective on just the solutions. For problems with starter
code, we exclude the starter code from the training loss.

Across both stages, we use the GELU activation function (Hendrycks & Gimpel, 2016), the AdamW
optimizer (Loshchilov & Hutter, 2019), a batch size of 256, and a weight decay of 0.05. We fine-tune
for 10 epochs. We use DeepSpeed and its implementation of the ZeRO optimizer to reduce memory
consumption while training large models (Rasley et al., 2020; Rajbhandari et al., 2020). Unless
otherwise specified, we use the default HuggingFace generation parameters, except that we use beam
search with a beam size of 10.

6.1 ADDITIONAL RESULTS

CodeBERT Results. We assess CodeBERT’s performance on our task (Feng et al., 2020b). While
CodeBERT is bidirectional, it can be fine-tuned for generation, as done in the original paper to
generate code documentation. In Table 3, we fine-tune CodeBERT on APPS and observe that it
performs worse than our GPT-2 models.

Generated Code. Additional examples of generated code can be found in Figure 4, Figure 5, and
Figure 6.
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Problem
Given is a directed graph G with N vertices and M edges. The vertices are numbered 1 to N, and
the i-th edge is directed from Vertex A_i to Vertex B_i. It is guaranteed that the graph contains no
self-loops or multiple edges. Determine whether there exists an induced subgraph (see Notes) of G
such that the in-degree and out-degree of every vertex are both 1. If the answer is yes, show one such
subgraph. Here the null graph is not considered as a subgraph.

Model Output
import sys

sys.setrecursionlimit(10 ** 7)
input = sys.stdin.readline
f_inf = float('inf')
mod = 10 ** 9 + 7

def resolve():
n, m = map(int, input().split())
edge = [[] for _ in range(n)]
for _ in range(m):

a, b = map(int, input().split())
edge[a - 1].append(b - 1)
edge[b - 1].append(a - 1)

def dfs(u):
stack = [u]
seen = [False] * n
while stack:

u = stack.pop()
if seen[u]:

continue
seen[u] = True
for v in edge[u]:

if seen[v]:
continue

seen[v] = True
stack.append(v)

res = None
for i in range(n):

if not seen[i]:
seen[i] = True
res = dfs(i)

if not res:
print(-1)

else:
print(res)

if __name__ == '__main__':
resolve()

Figure 4: An example generated by GPT-2 1.5B. The model can sometimes compose function calls.
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Problem
Given is a tree G with N vertices. The vertices are numbered 1 through N, and the i-th edge connects
Vertex a_i and Vertex b_i. Consider painting the edges in G with some number of colors. We want to
paint them so that, for each vertex, the colors of the edges incident to that vertex are all different.
Among the colorings satisfying the condition above, construct one that uses the minimum number of
colors.

Model Output
import sys
from collections import deque, defaultdict, Counter
from itertools import accumulate, product, permutations, combinations
from operator import itemgetter
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush
from math import ceil, floor, sqrt, gcd, inf
from copy import deepcopy
import numpy as np
import scipy as sp

INF = inf
MOD = 1000000007

n = int(input())
ab = [list(map(int, input().split())) for i in range(n - 1)]

graph = [[] for i in range(n + 1)]
for a, b in ab:

graph[a].append(b)
graph[b].append(a)

visited = [False] * (n + 1)
color = [0] * (n + 1)
color[0] = 1
stack = [1]
while stack:

x = stack.pop()
for y in graph[x]:

if visited[y]:
continue

visited[y] = True
color[y] = color[x] + 1
stack.append(y)

ans = min(color)
print(*ans, sep="\n")

Figure 5: An additional generated example. Here, the model output has many import statements.
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Problem
There is a special square room with mirrors on each of the four walls. Except for the southwest corner,
there are receptors on each of the remaining corners, numbered 0, 1, and 2. The square room has
walls of length p, and a laser ray from the southwest corner first meets the east wall at a distance
q from the 0th receptor. Return the number of the receptor that the ray meets first. (It is guaranteed
that the ray will meet a receptor eventually.)

Example 1:
Input: p = 2, q = 1
Output: 2
Explanation: The ray meets receptor 2 the first time it gets reflected back to the left wall.

Starter Code
class Solution:

def mirrorReflection(self, p: int, q: int) -> int:

Model Output
class Solution:

def mirrorReflection(self, p: int, q: int) -> int:
self.p = p
self.q = q
self.mirrors = [(0, 1), (0, -1), (1, 0), (-1, 0)]
return self.mirrors[self.p - 1][self.q - 1]

Figure 6: An example using the call-based format with some starter code.
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