
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

PRETRAINED TRANSFORMERS AS
UNIVERSAL COMPUTATION ENGINES

Kevin Lu
UC Berkeley
kzl@berkeley.edu

Pieter Abbeel
UC Berkeley
pabbeel@cs.berkeley.edu

Aditya Grover
Facebook AI Research
adityagrover@fb.com

Igor Mordatch
Google Brain
imordatch@google.com

ABSTRACT

We investigate the capability of a transformer pretrained on natural language to
generalize to other modalities with minimal finetuning – in particular, without
finetuning of the self-attention and feedforward layers of the residual blocks. We
consider such a model, which we call a Frozen Pretrained Transformer (FPT), and
study finetuning it on a variety of sequence classification tasks spanning numer-
ical computation, vision, and protein fold prediction. In contrast to prior works
which investigate finetuning on the same modality as the pretraining dataset, we
show that pretraining on natural language improves performance and compute
efficiency on non-language downstream tasks. In particular, we find that such pre-
training enables FPT to generalize in zero-shot to these modalities, matching the
performance of a transformer fully trained on these tasks1.

Bit Memory Bit XOR ListOps MNIST CIFAR-10 CIFAR-10 LRA Homology

Te
st

 A
cc

ur
ac

y 100 100

38

98

72

39

13

100 100

38

99

70

42

9

61
50

17

99.5

74

12 12

Performance on Multimodal Sequence Benchmarks

Frozen Pretrained Transformer Full Transformer Full LSTM

Figure 1: A frozen language-pretrained transformer (FPT) – without finetuning the self-attention
and feedforward layers – can match the performance of a transformer fully trained on a downstream
modality from scratch. We show results on diverse classification tasks (see Section A): numerical
computation (Bit Memory/XOR, ListOps), image classification (MNIST, CIFAR-10), and protein
fold prediction (Homology). We also show results for a fully trained LSTM to provide a baseline.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has shown immense success in deep learning,
serving as the backbone of massively large models for tasks in modeling of natural language (Brown
et al., 2020), images (Dosovitskiy et al., 2020; Touvron et al., 2020), and proteins (Jumper et al.,
2021), as well as multimodal datasets containing both images and text (Lu et al., 2019; Radford

1Code available at github.com/kzl/universal-computation.

1

https://github.com/kzl/universal-computation

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

et al., 2021). Inspired by these successes, we seek to explore the generalization capabilities of a
transformer in transferring from one modality to another.

Classical approaches to sequence processing used recurrent neural network (RNN) based-
approaches (Rumelhart et al., 1985; Hochreiter & Schmidhuber, 1997). In contrast, transformers
utilize self-attention layers to extract features across tokens of a sequence, such as words (Vaswani
et al., 2017) or image patches (Dosovitskiy et al., 2020). Furthermore, it has become common
practice to train large models on unsupervised or weakly supervised objectives before finetuning
or zero-shot generalization on a downstream task. However, the downstream tasks that have been
studied are generally restricted to the same modality as the original training set: for example, train
GPT (Radford et al., 2019) on a large language corpus, and finetune on a small task-specific dataset.
Our goal in this work is to investigate finetuning on modalities distinct from the training modality.

We hypothesize that transformers, namely the self-attention layers, can be pretrained on a data-
rich modality (e.g., natural language corpus) and identify feature representations that are useful
for arbitrary data sequences, enabling effective downstream transfer of different modalities without
expensive finetuning of the self-attention layers. In particular, we seek to investigate what pretrained
language models (LMs) are capable of generalizing to other modalities with sequential structure,
including numerical computation, image classification, and protein family prediction.

In Figure 1, we take a transformer model pretrained on natural language data, GPT-2 (Radford
et al., 2019), and finetune only the input and output layers, as well as the positional embeddings
and layernorm parameters. We call this model a Frozen Pretrained Transformer (FPT). On a range
of tasks across a variety of modalities, FPT displays comparable performance to training the entire
transformer or LSTM models, despite finetuning only .1% of the total number of parameters of the
transformer model and none of the self-attention parameters. Additionally, we find FPT models
also convergence faster during training. Our results suggest that the self-attention layers learned
by a language model may have properties amenable to efficient universal computation. Through a
series of experiments, we seek to investigate why language pretraining can transfer to other modali-
ties by examining pretraining regimes, architecture choice, generalization abilities, model size, and
importance of different sets of parameters in a transformer.

2 METHODOLOGY

We use a transformer model with linear input/output layers. Denote the embedding size/hidden
dimension of the transformer as ndim, the number of layers as nlayers, (note ndim = 768 and
nlayers = 12 for the base size models), the input dimension as din, the output dimension (number
of classes) as dout, and the maximum length of the sequence as l. We consider finetuning the
following parameters of a pretrained GPT-2 model (Radford et al., 2019):

• Output layer: it is crucial to finetune the output layer since we are transferring to a completely
new task – we use the simplest possible instantiation of an output network, being a single linear
layer applied to the last output token output by the transformer. This highlights that almost all
the computation is being performed by the frozen transformer. The output layer has ndim × dout
parameters for the weight matrix. For example, for the base models on CIFAR-10, this comes out
to 768 · 10 = 7680 parameters.

• Input layer: it is important to reinitialize a new input layer since we are reading in a new modality;
in essence, we are learning how to query the transformer. This contrasts with prior unsupervised
embedding evaluation techniques, such as linear probing – due to the change in modality, we
instead should train the input layer as well, and evaluate if the frozen intermediate transformer
model performs effective computation. The input layer has din × ndim parameters for the weight
matrix/embeddings, and an additional ndim parameters if there is a bias term. For the base models
on CIFAR-10, this comes out to 16 · 768 = 13056 parameters.

• Layernorm parameters: as is standard practice in other finetuning works (Rebuffi et al., 2017;
Houlsby et al., 2019), we also finetune the affine layernorm parameters (scale and bias), which
adapt to the statistics of the downstream task in a new domain. In GPT-2, layernorm is applied
twice per block, so these are a total of 4 × ndim × nlayers parameters. For the base models on
CIFAR-10, these come out to 4 · 768 · 12 = 36684 parameters.

2

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

• Positional embeddings: though we find these are surprisingly universal between modalities (see
Section ??), we generally see a small benefit to finetuning the positional embeddings which have a
cheap parameter cost of l×ndim. For the base models on CIFAR-10, these come out to 64 ·768 =
49512 parameters.

Given the cheap linear scaling of these parameters, the parameter counts of large transformer models
are dominated by the quadratic (in ndim and l) self-attention and feedforward layers. For the base
CIFAR-10 model with 124M parameters, these come out to approximately 0.086% of the network.

3 EMPIRICAL EVALUATION

3.1 CAN PRETRAINED LANGUAGE MODELS TRANSFER TO DIFFERENT MODALITIES?

We investigate if the self-attention and feedforward layers – the main body – of a pretrained trans-
former can be applied to a classification problem in a different modality without finetuning. To
do this, we apply our base method, where the input embedding layer, output readout layer, and
layernorm parameters are finetuned.

Our results are shown in Figure 1. We find that across all seven tasks considered, FPT achieves
comparable, if not marginally better performance than fully training a transformer. We believe these
results support the idea that these models are learning representations and performing computation
that is agnostic to the modality. We also note that both transformer variants significantly outperform
LSTMs on some tasks, particularly ListOps and CIFAR-10 LRA, which have long sequence lengths
of 512 and 1024, respectively.

We highlight a few important points for contextualizing these results. In particular, we find that
it can be difficult to fully train a 12-layer transformer on some of these (relatively small) datasets,
as training can either diverge/overfit or be unstable. For CIFAR-10, we report the full transformer
results for a 3-layer model, and for CIFAR-10 LRA we report the number given for the 3-layer
model from Tay et al. (2020). From an engineering perspective, this makes the full transformers
harder to tune since we must choose model sizes that are stable and avoid overfitting – see Section
3.4 for more analysis. Furthermore, unlike some other works utilizing transformers for vision, we
do not use convolutional input layers for a clean and fair analysis; only a linear layer is learned.
Note that we also do not use 2D positional embeddings (or other domain-specific techniques), hence
providing very weak inductive prior to the model.

3.2 HOW DOES LANGUAGE PRETRAINING AFFECT DOWNSTREAM PERFORMANCE?

Additionally, to further investigate the importance of language supervision, we also consider pre-
training on the Bit Memory task, which simply allows the transformer to gain supervision working
with arbitrary bit strings and performing memory/denoising. Our results are shown in Table 2. Pre-
training on the bit memory task improves performance compared to the random models, but still lag
behind training on natural language data. Additionally, we find that in terms of number of gradi-
ent steps/samples, pretraining on language leads to the fastest convergence, while pretraining on bit
memory leads to somewhat slower convergence, and both pretraining methods converge significantly
faster than the randomly initialized transformer models (more details in Section 3.5).

Table 1: Test accuracy of pretrained (FPT) vs randomly initialized (Random) models. The trans-
former is frozen. Random transformer initialization performs worse than pretraining with language.

Model Bit Memory XOR ListOps MNIST C10 C10 LRA Homology
FPT 100% 100% 38% 98% 68% 39% 13%

Random 76% 100% 37% 92% 62% 36% 9%

Additionally, to further investigate the importance of language supervision, we also consider pre-
training on the Bit Memory task, which simply allows the transformer to gain supervision working
with arbitrary bit strings and performing memory/denoising. Our results are shown in Table 2. Pre-
training on the bit memory task improves performance compared to the random models, but still lag
behind training on natural language data.

3

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 2: Test accuracy of language-pretrained (FPT) vs bit memory-pretrained (Bit) models. Simply
pretraining on this simple task performs well, but language provides additional supervision.

Model Bit Memory XOR ListOps MNIST C10 C10 LRA Homology
FPT 100% 100% 38% 98% 68% 39% 13%
Bit 100% 100% 37% 97% 63% 37% 8%

3.3 HOW IMPORTANT IS THE TRANSFORMER SELF-ATTENTION ARCHITECTURE?

In Section 3.2 we found that the transformer architecture can already be fairly effective in this
regime, even with only random parameters. Here, we consider using a random LSTM architecture
instead of the transformer, allowing us to consider the raw effect of the architecture in this setting.

Table 3: Test accuracy of randomly initialized transformers vs randomly initialized LSTM models.
Note that unlike in Figure 1, the LSTM here is frozen. Frozen LSTMs perform very poorly.

Model Bit Memory XOR ListOps MNIST C10 C10 LRA Homology
Trans. 76% 100% 37% 92% 62% 36% 9%
LSTM 50% 50% 17% 68% 34% 10% 6%

3.4 DOES FREEZING THE TRANSFORMER PREVENT OVERFITTING OR UNDERFITTING?

Our general findings are that, in contrast to their fully trained counterparts, FPT models under-
fit, which lends them to further improvements by increasing model capacity. For example, in the
CIFAR-10 LRA task, which is maximally difficult due to lack of inductive prior over the sequence
(each pixel is fed in as an arbitrary token only ordered by a raster scan) and relatively small size
of the CIFAR-10 dataset (50k images). In Table 4, we show the train/test gap between FPT ver-
sus training a 3-layer transformer from Tay et al. (2020), which we find to give stronger results
than our experiments; in particular, they are much better than training a 12-layer transformer, which
works poorly. Our results indicate that FPT is generally providing generalizable task representations
without causing overfitting, whereas transformers can overfit arbitrarily poorly in low-data regimes.

Table 4: Train vs test accuracies on CIFAR-10 LRA task.
Model Number of Layers Test Accuracy Train Accuracy

FPT (GPT-2) 12 39% 39%
Vanilla Transformer 3 42% 70%

3.5 DOES LANGUAGE PRETRAINING IMPROVE COMPUTE EFFICIENCY?

We consider the number of gradient steps to converge for FPT vs random transformer models. We
generally find FPT models converge faster, which indicates that we can utilize the language pretrain-
ing to actually gain compute speedups for non-language tasks. Note that the bit memory pretraining
method regime introduced in Section 3.2 generally falls between the two models, and notably is
about 6× slower than FPT on Bit XOR, which is significantly better than random.

Table 5: Number of gradient steps until convergence for pretrained (FPT) vs randomly initialized
(Random) models. Note that we use the same batch size and learning rate for both models.

Model Memory XOR ListOps MNIST C10 C10 LRA Homology
FPT 1× 104 5× 102 2× 103 5× 103 4× 105 3× 105 1× 105

Random 4× 104 2× 104 6× 103 2× 104 4× 105 6× 105 1× 105

Speedup 4× 40× 3× 4× 1× 2× 1×

4 CONCLUSION

We proposed transferring a pretrained transformer-based language model for downstream tasks in
non-language modalities. Through extensive empirical evaluation, we showed that these models
could achieve performance competitive with transformers fully trained on the downstream task with-
out having to finetune the self-attention and feedforward layers.

4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

REFERENCES

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Naomi K Fox, Steven E Brenner, and John-Marc Chandonia. Scope: Structural classification of
proteins—extended, integrating scop and astral data and classification of new structures. Nucleic
acids research, 42(D1):D304–D309, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunya-
suvunakool, Olaf Ronneberger, Russ Bates, Augustin Žı́dek, Alex Bridgland, Clemens Meyer,
Simon A A Kohl, Anna Potapenko, Andrew J Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Martin Steinegger, Michalina Pacholska, David Silver, Oriol Vinyals, Andrew W Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. High accuracy protein structure prediction
using deep learning. 2021.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. arXiv preprint arXiv:1908.02265, 2019.

Thomas Miconi, Kenneth Stanley, and Jeff Clune. Differentiable plasticity: training plastic neural
networks with backpropagation. In International Conference on Machine Learning, pp. 3559–
3568. PMLR, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. Image, 2:T2, 2021.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel,
and Yun S Song. Evaluating protein transfer learning with tape. In Advances in Neural Informa-
tion Processing Systems, 2019.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. arXiv preprint arXiv:1705.08045, 2017.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

5

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

6

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

A TASKS

We evaluate on a diverse set of classification tasks representative of different modalities. In partic-
ular, we are interested in if language models are inherently capable of universal computation, by
which we mean the ability to learn representations for predictive learning across diverse modalities.

Bit memory. Similar to the task proposed by Miconi et al. (2018), we consider a bit memory task
where the model is shown 5 bitstrings of length 1000. Afterwards, the model is shown a masked
version of one of the bitstrings which has bits masked with probability 0.5, and the model is tasked
with producing the original bitstring. The bitstrings are broken up into sequences of length 50, so
that the model is fed 120 tokens of dimension 50.

Bit XOR. Similar to the bit memory task, the model is shown 2 bitstrings of length 5, where the
model predicts the XOR of the two bitstrings. The bitstrings are shown 1 bit at a time, so the models
are fed 10 tokens of dimension 1.

ListOps. Taken from Tay et al. (2020), the model is shown a sequence of list operations (e.g., [
MAX 4 3 [MIN 2 3] 1 0]) and tasked with predicting the resulting output digit. This
task evaluates the ability of a model to parse mathematical expressions and evaluate over a long
context. The model is shown 1 token at a time, so the models are fed 512 tokens.

MNIST. We use the standard MNIST benchmark, where the model must classify a handwritten digit
from a 32× 32 black-and-white image. The tokens given to the model are 4× 4 image patches, so
the models are fed 64 tokens of dimension 16.

CIFAR-10. We use the standard CIFAR-10 benchmark (Krizhevsky et al., 2009), where each tokens
given to the model are 4× 4 image patches, so the models are fed 64 tokens of dimension 16.

CIFAR-10 LRA. This is a modified version of the above task taken from the Long Range Arena
benchmark where the images are converted to grayscale and flattened with token length of 1 (Tay
et al., 2020). As a result, the input sequence consists of 1024 tokens of dimension 1. This task is
more challenging than vanilla CIFAR-10 classification above as the models must learn patterns over
a significantly longer sequence length.

Remote homology detection. In this task, we are interested in predicting the fold for a protein,
represented as an amino acid sequence. We use the datasets provided by TAPE (Rao et al., 2019; Fox
et al., 2013; Hou et al., 2018), which generates a train/test split by holding out certain evolutionary
groups. There are 20 common and 5 uncommon amino acids, and there are 1195 possible labels to
predict. We only consider sequences of length less than 1024 for simplicity. The models are thus
fed up to 1024 tokens of dimension 25.

7

	Introduction
	Methodology
	Empirical Evaluation
	Can pretrained language models transfer to different modalities?
	How does language pretraining affect downstream performance?
	How important is the transformer self-attention architecture?
	Does freezing the transformer prevent overfitting or underfitting?
	Does language pretraining improve compute efficiency?

	Conclusion
	Tasks

