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ABSTRACT

Many intellectual endeavors require mathematical problem solving, but this skill
remains beyond the capabilities of computers. To measure this ability in machine
learning models, we introduce MATH, a new dataset of 12,500 challenging
competition mathematics problems. Each problem in MATH has a full step-by-step
solution which can be used to teach models to generate answer derivations and
explanations. To facilitate future research and increase accuracy on MATH, we
also contribute a large auxiliary pretraining dataset which helps teach models the
fundamentals of mathematics. Even though we are able to increase accuracy on
MATH, our results show that accuracy remains relatively low, even with enormous
Transformer models. Moreover, we find that simply increasing budgets and model
parameter counts will be impractical for achieving strong mathematical reasoning
if scaling trends continue. While scaling Transformers is automatically solving
most other text-based tasks, scaling is not currently solving MATH. To have more
traction on mathematical problem solving we will likely need new algorithmic
advancements from the broader research community. The full paper is available
at https://arxiv.org/abs/2103.03874.

1 INTRODUCTION

Mathematics is a highly effective tool in many intellectual endeavors. It enables us to count and
quantify objects, and it can be relied upon because it is consistent and based on logic. Mathematics
pervades the sciences and can be used to model planetary orbits, atomic motion, signal frequencies,
and much more. These phenomena can be encoded with mathematics precisely and concisely. This
has even led some to describe mathematics as being “unreasonably effective” (Wigner, 1960). These
observations speak to the broad reach and domain-generality of mathematics.

In machine learning, mathematics is a valuable testbed for problem-solving ability: the ability to
analyze a problem, pick out good heuristics from a large set of possibilities, and chain them together
to produce an answer. This contrasts with plug-and-chug calculations, a skill which ML models
can already exhibit (Henighan et al., 2020). Visual or linguistic reasoning may involve limited
problem-solving ability for tasks such as image classification, but unlike math this is not the focus of
these domains.

To measure the problem-solving ability of machine learning models, we introduce the MATH dataset,
which consists of 12, 500 problems from high school math competitions. Given a problem from
MATH, machine learning models generate a sequence, such as $\frac{2}{3}$, that encodes the
final answer. These answers are unique after normalization, allowing MATH to be scored with exact
match rather than with heuristic metrics such as BLEU. In addition, MATH problems are tagged by
difficulty from 1 to 5, and span seven subjects including geometry, where diagrams can be specified in
text with the Asymptote language. This enables a fine-grained assessment of mathematical problem-
solving ability across difficulties and subjects. Finally, problems come with full step-by-step solutions,
which are a valuable additional source of training data.
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Metamath Theorem Proving
n ∈ N ∧ n+1

2 ∈ N =⇒ ∃m ∈ N : n = 2m+ 1.
GPT-f ’s generated proof:
|- ((N e. NN0 /\ ((N + 1)/2) e.

NN0) -> ((N - 1) / 2) e. NN0)
|- (N e. NN0 -> N e. CC)
|- 1 e. CC
|- ((N e. CC /\ 1 e. CC) ->

(N - 1) e. CC )
...

DeepMind Mathematics Dataset
Divide 1136975704 by -142121963
Answer: -8
Calculate ((-2)/3)/(-1-(-24)/9)
Answer: -2/5
Let k(u) = u**2+u-4. Find k(0)
Answer: -4
Sort 2, 4, 0, 6
Answer: 0, 2, 4, 6

MATH Dataset (Ours)
Problem: Tom has a red marble, a green marble, a blue
marble, and three identical yellow marbles. How many
different groups of two marbles can Tom choose?
Solution: There are two cases here: either Tom chooses two
yellow marbles (1 result), or he chooses two marbles of
different colors (

(
4
2

)
= 6 results). The total number of distinct

pairs of marbles Tom can choose is 1 + 6 = 7 .
Problem: If

∑∞
n=0 cos2n θ = 5, what is cos 2θ?

Solution: Note 1 + cos2 θ + cos4 θ + · · · = 1
1−cos2 θ = 5.

Hence, cos2 θ = 4
5 . Then cos 2θ = 2 cos2 θ − 1 =

3

5
.

Problem: The equation x2 + 2x = i has two complex
solutions. Determine the product of their real parts.
Solution: Complete the square by adding 1 to each side.
Then (x+ 1)2 = 1 + i = e

iπ
4

√
2, so x+ 1 = ±e iπ8 4

√
2. The

desired product is then(
−1 + cos
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π
8

)
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2
) (
−1− cos

(
π
8
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2
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Figure 1: Previous work is based on formal theorem provers or straightforward plug-and-chug
problems. Our dataset, MATH, has competition mathematics problems with step-by-step solutions
written in LATEX and natural language.

The MATH dataset is challenging: large language models achieved accuracies ranging from 2.9%
to 6.9%. Despite these low accuracies, models clearly possess some mathematical knowledge: they
achieve up to 15% accuracy on the easiest difficulty level, and they are able to generate step-by-step
solutions that are coherent and on-topic even when incorrect. A computer science PhD attained
approximately 40% on MATH, and a three-time IMO gold medalist attained 90%, showing that
MATH can be challenging for humans and machines.

The presence of step-by-step solutions allows models to utilize “scratch space”: rather than having to
generate a final answer immediately, models can first generate solutions that may contain intermediate
computations. Interestingly, we found that generating solutions actually decreased accuracy relative
to immediately outputting a final answer. In contrast, using solutions at training time increases
relative accuracy by 10%. Models also do better with hints that contain a prefix of the solution. This
shows that models understand and make use of step-by-step solutions, but are unable to wield them
of their own accord. Bridging this gap poses an interesting direction for further research.

While MATH covers advanced problem-solving techniques, models arguably also need to be trained
thoroughly on the fundamentals of mathematics. To address this, we create the first large-scale
mathematics pretraining dataset with hundreds of thousands of step-by-step solutions in natural
language and LATEX. We call this dataset the Auxiliary Mathematics Problems and Solutions (AMPS)
pretraining corpus, which consists of Khan Academy and Mathematica data. AMPS has over 100, 000
Khan Academy problems with step-by-step solutions in LATEX; these exercises are used to teach
human students concepts ranging from basic addition to Stokes’ Theorem. It also contains over
5 million problems generated using Mathematica scripts, based on 100 hand-designed modules
covering topics such as conic sections, div grad and curl, KL divergence, eigenvalues, polyhedra, and
Diophantine equations. In total AMPS contains 23GB of problems and solutions. Domain-specific
pretraining (Gururangan et al., 2020) on AMPS improves relative accuracy by around 25%, equivalent
to a 15× increase in model size.

Altogether, while large Transformer models (Vaswani et al., 2017) make some progress on the MATH
dataset, such as by AMPS pretraining or by training with step-by-step solutions, accuracy nonetheless
remains relatively low. While enormous Transformers pretrained on massive datasets can now solve
most existing text-based tasks, this low accuracy indicates that our MATH dataset is distinctly harder.
Accuracy also increases only modestly with model size: assuming a log-linear scaling trend, models
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Model Prealgebra Algebra Number
Theory

Counting &
Probability

Geometry Intermediate
Algebra

Precalculus Average

GPT-2 (0.1B) 5.2 5.1 5.0 2.8 5.7 6.5 7.3 5.4 (+0%)
GPT-2 (0.3B) 6.7 6.6 5.5 3.8 6.9 6.0 7.1 6.2 (+15%)
GPT-2 (0.7B) 6.9 6.1 5.5 5.1 8.2 5.8 7.7 6.4 (+19%)
GPT-2 (1.5B) 8.3 6.2 4.8 5.4 8.7 6.1 8.8 6.9 (+28%)
GPT-3 (2.7B) 2.8 2.9 3.9 3.6 2.1 2.5 2.6 2.9 (−46%)
GPT-3 (175B) 7.7 6.0 4.4 4.7 3.1 4.4 4.0 5.2 (−4%)

Table 1: MATH accuracies across subjects for GPT-2 and few-shot GPT-3 models. The character
‘B’ denotes the number of parameters in billions. The gray text indicates the relative improvement
over the 0.1B baseline. All GPT-2 models pretrain on AMPS, and all values are percentages. A 15×
increase in model parameters increased accuracy by 1.5%, a 28% relative improvement. Likewise,
enormous GPT-3 models do not automatically solve the MATH benchmark, unlike many other
benchmarks. Model accuracy is growing slowly and is far from the ceiling, so much future research
is needed.

would need around 1035 parameters to achieve 40% accuracy on math, which is impractical. Instead,
to make large strides on the MATH dataset with a practical amount of resources, we will need new
algorithmic advancements from the broader research community.

2 THE MATH DATASET

In this section, we introduce two new datasets, one for pretraining (AMPS) and one for benchmarking
mathematical problem-solving ability (MATH). The problems in AMPS can help teach models
plug-and-chug calculations. This is a prerequisite for MATH, which goes beyond plug-and-chug
questions to test mathematical problem-solving ability.

The MATH dataset consists of problems from mathematics competitions including the AMC 10,
AMC 12, AIME, and more. Many of these competition problems can be collected from artofprob-
lemsolving.com/community/c3158_usa_contests. The competitions span decades and assess the
mathematical problem-solving ability of the best mathematical talent in the United States. Unlike
most prior work, most problems in MATH cannot be solved with a straightforward application of
standard K-12 mathematics tools. Instead, humans often solve such problem by applying problem
solving techniques and “heuristics” (Pólya, 1945).

The Mathematics Aptitude Test of Heuristics dataset, abbreviated MATH, has 12, 500 problems and
step-by-step solutions (7, 500 training + 5, 000 test). With this many training problems, models can
learn many useful heuristics for problem solving. Each problem has a step-by-step solution and a
final boxed answer. Example problems with step-by-step solutions are shown in Figure 1.

We further describe the MATH dataset and our AMPS pretraining dataset in the appendix.

3 EXPERIMENTS

In this section, we perform experiments to investigate performance on the MATH dataset. We find that
our AMPS pretraining dataset increases MATH accuracy by approximately as much as a 15× increase
in model size, and that adding gigabytes of mathematics pretraining data from Math StackExchange
does not help. We also find that models are highly overconfident. The models can also learn to
reliably generate LATEX step-by-step solutions and even graphical figures, even though the steps in the
generated solutions are currently dubious. We observe that training on MATH step-by-step solutions
also improves accuracy. Overall we find that MATH accuracy is increasing, but it is far from the
ceiling.

3.1 ANALYZING MODEL PERFORMANCE

Model Size. While increasing model parameters often automatically solves many tasks (Brown
et al., 2020), we find that MATH is unusually challenging for enormous Transformers. Table 1 shows
that the average accuracy across subjects for the smallest model, GPT-2 with 0.1 billion parameters, is
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Problem: Suppose a and b are positive real numbers with a > b and ab = 8. Find the minimum
value of a

2+b2

a−b .

Generated solution: Let s = a + b. By QM-AM,
√

a2+b2

a−b ≥
a+b
2 = s

2 . Then a2+b2

a−b ≥
s2

4 , so

a2 + b2 ≥ s2

2 . Hence, a
2+b2

a−b ≥
s2

2 + 2s2

a−b = s2

2 + 2s2 = 8 .

Ground truth solution: We can write a2+b2

a−b = a2+b2−2ab+16
a−b = (a−b)2+16

a−b = a − b + 16
a−b . By

AM-GM, a− b+ 16
a−b ≥ 2

√
(a− b) · 16

a−b = 8. Equality occurs when a− b = 4 and ab = 8. We

can solve these equations to find a = 2
√

3 + 2 and b = 2
√

3− 2. Thus, the minimum value is 8 .

Problem: Right ∆ABC has legs measuring 8 cm and 15 cm. The triangle is rotated about one of
its legs. What is the number of cubic centimeters in the maximum possible volume of the resulting
solid? Express your answer in terms of π.
Generated solution: Rotating the triangle about one leg gives us the following triangle:

8

15
(8)(15)

(8)(−1) + (15)(−1)
=

120

7
= 120π .

Ground truth solution: If the triangle is rotated about the shorter leg, then the radius is the longer
leg and the height is the shorter leg, and the volume is 1

3 · (152π)(8) = 600π cubic centimeters. If the
triangle is rotated about the longer leg, then the radius is the shorter leg and the height is the longer
leg, and the volume is 1

3 (82π)(15), which is 8
15 of the volume we found earlier. So, the maximum

possible volume is 600π cubic centimeters.

Figure 2: Problems, step-by-step solutions generated by our GPT-2 1.5B model, and ground truth
solutions. Observe that models can provide the right answer yet generate a misleading and wrong
explanation. The second generated solution demonstrates that models are capable of generating
asymptote commands to create figures and graphics.

5.4%. Meanwhile, a GPT-2 model with 15× the number of parameters, attains 6.9% accuracy, a 28%
relative improvement. This indicates that while having more parameters helps, absolute accuracy
remains far from the ceiling and is only increasing slowly, quite unlike most other text-based tasks.

AMPS Pretraining. As an ablation, we test how performance of models with AMPS pretraining
compares with models that were not pretrained on AMPS. Without pretraining on AMPS, a GPT-2
(1.5B) model fine-tuned on MATH attains 5.5% accuracy. In contrast, a GPT-2 (1.5B) model both
pretrained on AMPS and fine-tuned on MATH attains 6.9%, a 25% relative improvement in accuracy.
Consequently AMPS increases accuracy about as much as a 15× increase in parameters, indicating
its value as a pretraining dataset.

We tried additionally pretraining on StackExchange, a real-world but less curated source of mathe-
matics text. A GPT-2 (0.3B) model pretrained on both AMPS and questions and answers from Math
StackExchange (∼ 3 GB) had 6.0% accuracy, which is actually less than the 6.2% accuracy attained
by pretraining on AMPS alone. Thus our dataset is more useful for pretraining even than diverse
real-world mathematics data.

4 CONCLUSION

In this paper, We introduced the MATH benchmark, which enables the community to measure
mathematical problem-solving ability. In addition to having answers, all MATH problems also include
answer explanations, which models can learn from to generate their own step-by-step solutions. We
also introduce AMPS, a diverse pretraining corpus that can enable future models to learn virtually
all of K-12 mathematics. While most other text-based tasks are already nearly solved by enormous
Transformers, MATH is fortunately different. We showed that accuracy is slowly increasing and, if
trends continue, the community will need to discover conceptual and algorithmic breakthroughs to
attain strong performance on MATH. Given the broad reach and applicability of mathematics, solving
the MATH dataset with machine learning would be of profound practical and intellectual significance.
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