
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

PROOF ARTIFACT CO-TRAINING FOR THEOREM PROV-
ING WITH LANGUAGE MODELS

Jesse Michael Han
University of Pittsburgh
Pittsburgh, PA, USA
jmh288@pitt.edu

Jason Rute
CIBO Technologies
Cambridge, MA, USA
jason.rute@gmail.com

Yuhuai Wu
University of Toronto
Toronto, ON, Canada
ywu@cs.toronto.edu

Edward W. Ayers
University of Cambridge
Cambridge, UK
ewa21@cam.ac.uk

Stanislas Polu
OpenAI
San Francisco, CA, USA
spolu@openai.com

ABSTRACT

Labeled data for imitation learning of theorem proving in large libraries of formal-
ized mathematics is scarce as such libraries require years of concentrated effort
by human specialists to be built. This is particularly challenging when applying
large Transformer language models to tactic prediction, because the scaling of
performance with respect to model size is quickly disrupted in the data-scarce,
easily-overfitted regime. We propose PACT (Proof Artifact Co-Training), a general
methodology for extracting abundant self-supervised data from kernel-level proof
terms for co-training alongside the usual tactic prediction objective. We apply this
methodology to Lean, an interactive proof assistant which hosts some of the most
sophisticated formalized mathematics to date. We instrument Lean with a neural
theorem prover driven by a Transformer language model and show that PACT
improves theorem proving success rate on a held-out suite of test theorems from
32% to 48%.

1 INTRODUCTION

Deep learning-driven automated theorem proving in large libraries of formalized mathematics (hence-
forth “neural theorem proving”) has been the focus of increased attention in recent years. Labeled
data for imitation learning of theorem proving is scarce—formalization is notoriously labor-intensive,
with an estimated cost of 2.5 man-years per megabyte of formalized mathematics Wiedijk (2000),
and complex projects require years of labor from human specialists. Within a fixed corpus of (pos-
sibly unproven) theorem statements, it is possible to augment a seed dataset of human proofs with
new successful trajectories using reinforcement learning or expert iteration. However, this is quite
computationally intensive, and without a way to expand the curriculum of theorems, the agent will
inevitably saturate and suffer from data starvation.

Data scarcity is a particularly thorny obstruction for applying large language models (LLMs) to
neural theorem proving. LLMs have achieved spectacular success in data-rich regimes such as plain
text Brown et al. (2020), images Dosovitskiy et al. (2020), and joint text-image modeling Radford
et al., and the performance of decoder-only Transformers has been empirically shown to obey scaling
power laws in model and data size Henighan et al. (2020). However, existing datasets of human
proof steps for neural theorem proving are extremely small and exist at scales at which overfitting
occurs extremely rapidly, disrupting the scaling of performance with respect to model size Kaplan
et al. (2020).

We make two contributions towards addressing the problem of data scarcity in the context of formal
mathematics. First, we introduce PACT (Proof Artifact Co-Training), a general methodology for
extracting self-supervised auxiliary tasks for co-training a language model alongside a tactic prediction
objective for interactive theorem proving. Second, we present LEANSTEP, a collection of datasets

1

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

and a machine learning environment for the Lean 3 theorem prover with support for PACT, supervised
learning of tactic prediction, theorem proving evaluation, and reinforcement learning.

We train large language models on these data and demonstrate that PACT significantly improves
theorem proving success rate on a held-out suite of test theorems, from 32% to 48%.On an out-of-
distribution collection of thousands of theorems (some involving novel definitions) added to Lean’s
mathematical library after we extracted our train/test data, we achieve a theorem proving success rate
of 37%, suggesting strong generalization and usefulness at the frontier of formalized mathematics.

2 PROOF ARTIFACT CO-TRAINING

We describe the PACT methodology and its implementation for Lean. We refer the reader to
Appendix A and Appendix D for background on Lean and more details about our datasets.

2.1 PROOF ARTIFACT CO-TRAINING

For every proof term τ of a top-level theorem, we record the type Γ of τ , its name nm, and a list ps
of all premises (i.e. named references to other lemmas in the library) which are used in τ . We then
recurse through τ , tracking a list bs of bound variables which we update whenever navigating into
the body of a λ-expression. At every sub-term τ ′ ⊆ τ we record τ ′, its type Γ′, the current state of
bs, and the following data:

1. A tactic state, where the goal is set to be Γ′ and the list of hypotheses in the local context is
set to be the list bs, i.e. those bound variables in scope at τ ′.

2. A partial proof term, i.e. τ with τ ′ masked out.
3. A premise selection bitmask, i.e. Boolean labels for all p in ps indicating if p is used in τ ′.
4. A local context bitmask, i.e. indicating for each b in bs whether b is used in τ ′.
5. An optional next lemma: if the first step of τ ′ is to apply a premise p in ps, we record p.

Whenever we record a term, we record both pretty-printed and far more explicit fully elaborated
versions of it. Fully elaborated terms explicitly display enormous amounts of type information which
are usually silently inferred. From these data, we assemble the following language modeling tasks:

1. Next lemma prediction. Given the tactic state, predict the next lemma to be applied.
2. Proof term prediction. Given the tactic state, predict the entire proof term τ ′.
3. Skip-proof. Given the partial proof term, predict the masked-out subterm τ ′.
4. Type prediction. Given the partial proof term, predict the type Γ′ of the masked-out subterm
τ ′.

5. Tactic state elaboration. Given the tactic state, predict the fully elaborated tactic state.
6. Proof term elaboration. Given τ , predict the fully elaborated version of τ .
7. Premise classification. Given the tactic state and a premise p ∈ ps, predict either <TRUE>

or <FALSE> according to the premise selection bitmask.
8. Local context classification. Given the tactic state (which consists of a list of local as-

sumptions bs and the goal Γ′), predict the sublist of bs which is true on the local context
bitmask.

9. Theorem naming. Given the type Γ of the top-level proof term τ , predict the name nm.

3 EXPERIMENTS

In all of our experiments we use decoder-only Transformers similar to GPT-3 Brown et al. (2020).
Unless mentioned otherwise, all of our models have 24 layers with dmodel = 1536 and 24 heads,
accruing to 837M trainable parameters. They are also pre-trained on WebMath Polu & Sutskever
(2020) for 72B tokens. We use the standard BPE encoding Brown et al. (2020), a batch size of 512
and a learning rate of 0.00025 with a cosine schedule and a 100-step ramp-up.

2

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

We use an 80-5-15 train-validation-test split. We split all datapoints deterministically by theorem
name, by hashing each name to a float in (0, 1). This ensures, for example, that proof steps used to
prove a test theorem never appear in the training data and vice-versa.

When fine-tuning a model, we load its saved parameters but re-initialize the optimizer. We start each
training for a fixed number of tokens (defining the cosine schedule) and record the number of tokens
consumed as we reach a minimal validation loss. We use the minimum validation loss snapshot to
evaluate each model on our held-out test set.

Given our compute budget and the impossiblity to ablate all components of our dataset separately, we
partition our datasets into three groups:

1. tactic: the dataset described in Appendix D.1.

2. mix1: the union of the PACT tasks next lemma prediction and proof term predic-
tion (Section 2.1), selected because of their close relation to tactic.

3. mix2: all other datasets described in Section 2.1.

We isolate mix1 because of the proximity of the next lemma and proof term prediction tasks to the
tactic prediction objective.

3.1 THEOREM PROVING EVALUATION

We run theorem-proving evaluations on our held-out test set, comprising 3071 theorems. Since
the split was conducted by theorem name, the proofs of these theorems never appear in the training
data. For each theorem in the test set, we set the runtime environment to the location where the
theorem is proved in the source code, preventing the use of theorems defined later in mathlib and
ensuring that we never derive circular proofs. We run the proof search algorithm using either the
tidy or the gptf backend. In all of our experiments, we use a maximum width of wmax = 16, a
maximum depth of dmax = 128, a maximum budget of 512 iterations of the outer loop, a timeout of
5 seconds per tactic execution, and a global timeout of 600 seconds per theorem. Because sampling
candidates from our models over the OpenAI API is much slower (≈ 1 second) than querying the
constant baseline oracle (instantaneous), the baseline proof search runs through many more
rounds of proof search than gptf before timeout. We report the percentage of theorems proved from
the held-out test set, averaging over three evaluation runs.

3.2 EFFECT OF CO-TRAINING VS PRE-TRAINING

The main focus of our experiments consists in comparing the effects of pre-training and co-training
with the mix1 and mix2 datasets. We pre-train using the methodology described above (potentially
sequentially pre-training twice, first on WebMath, and then on a PACT dataset). When co-training
we simply concatenate and shuffle the datasets together without applying any particular weight to a
given dataset.

The main results are presented in Figure 1. Pre-training exhibits an effective transfer from mix-1
and/or mix-2 but the best result is achieved by co-training with both these datasets. With this
setup, we are able to train for much longer (71B tokens vs 22B+18B for the best pre-training setup)
before overfitting on the PROOFSTEP task. We hypothesize that PACT regularizes overfitting to
the PROOFSTEP task while still imparting useful knowledge to the model due to large amounts of
mutual information between all tasks, and that this is the main driver of increased performance.

In Appendix E, we further ablate on WebMath pre-training and study the effect of model scale.

3.3 FUTURE-MATHLIB EVALUATION

In the 5 week period that separated our last dataset extraction and the writing of this paper, mathlib
grew by 30K lines of code, adding 2807 new theorems. Evaluating our models on these new theorem
statements gives a unique way to assess their capability to assist humans in formalizing proofs and
to test their generalization to completely unseen theorems and definitions. This evaluation set also
addresses one of the weaknesses of using a random split of theorems from a formal mathematics

3

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Model Tokens total Early-stop mix1 mix2 tactic Pass-rate

Baselines
refl 1.1%
tidy-bfs 9.9%
WM > tt 32B 1B 1.02 32.2%

Pre-training
WM > m1 32B 11B 0.08
WM > m2 32B 16B 0.08
WM > m1 + m2 32B 22B 0.11 0.08
WM > m1 > tt 32B 1B 1.00 39.8%
WM > m1 + m2 > tt 32B 1B 0.97 44.0%

Co-training (PACT)
WM > m1 + tt 32B 18B 0.08 0.94 40.0%
WM > m1 + m2 + tt 96B 71B 0.09 0.09 0.91 48.4%

Pre-training and co-training
WM > m2 > m1 + tt 32B 18B 0.08 0.93 46.9%

Figure 1: Comparison of pre-training and co-training on mix-1 (m1) and mix-2 (m2) for tactic
(tt) finetuning. > denotes a pre-training step and + denotes co-training. For example, WM > m2
> m1 + tt signifies a model successively pre-trained on WebMath then mix2 and finally co-
trained as a fine-tuning step on mix1 and tactic. Columns mix1, mix2, tactic report the min
validation loss achieved on these respective datasets.

library, namely that the split is non-chronological; e.g. test theorems can appear as lemmas in proofs
of train theorems.

We call this temporally held-out test set future-mathlib and evaluate our best model as well
as the refl and tidy-bfs baselines on it. In contrast to evaluation on our test split, the refl
baseline (simply attempting a proof by the refl tactic) closes 328 proofs (11.6%), demonstrating
an important skew towards trivial boilerplate lemmas generally defined to provide alternate inter-
faces to new definitions. The tidy-bfs baseline closed 611 proofs (21.8%), and our best model
wm-tt-m1-m2 closed 1043 proofs (37.1%), proving 94% of the refl lemmas. We attribute the
weaker performance to heavy distribution shift: by the nature of the dataset, the future-mathlib
theorems frequently involve new definitions and concepts which the model was never exposed to
during training. Nevertheless, the success rate remains high enough to suggest strong generalization
and usefulness at the frontier of formalized mathematics.

4 DISCUSSION

We have presented PACT as a way of addressing the data scarcity issue for learning theorem proving
from human tactic scripts in proof assistant libraries. Another well-studied solution for this is expert
iteration and reinforcement learning. In the setting of HOL Light, and under the assumption of a
hardcoded finite action space of tactics, DeepHOLZero in conjunction with supervised seed data was
able to achieve up to 70% proof success rate on the HOList theorem proving task. Similarly, in a
set-up much closer to ours, MM GPT-f demonstrated the feasibility of expert iteration when using
generative language models for theorem proving.

Within a fixed corpus of theorems (and hence proof terms), however, both PACT and RL are
fundamentally constrained by a lack of exploration—as the performance of the theorem proving
agent improves, it will eventually saturate and become starved for data, and its curriculum will need
to be expanded. Although self-supervised methods such as PACT represent a way to significantly
improve the data-efficiency of reinforcement learning loops over existing theorem prover libraries, the
development of continuously self-improving and infinitely scalable neural theorem provers remains
contingent on sufficiently powerful exploration and automated curriculum generation; we consider
these challenges to be of paramount importance.

4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

REFERENCES

Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason., 52(2):191–213, 2014.
doi: 10.1007/s10817-013-9286-5.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, and Christian Szegedy. Learning to reason in large
theories without imitation. CoRR, abs/1905.10501, 2019a. URL http://arxiv.org/abs/
1905.10501.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An
environment for machine learning of higher order logic theorem proving. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 454–463. PMLR, 2019b. URL http://proceedings.
mlr.press/v97/bansal19a.html.

Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. The tactician - A seamless, interactive
tactic learner and prover for coq. In Christoph Benzmüller and Bruce R. Miller (eds.), Intelligent
Computer Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-
31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pp. 271–277.
Springer, 2020. doi: 10.1007/978-3-030-53518-6\ 17. URL https://doi.org/10.1007/
978-3-030-53518-6_17.

Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Hammering
towards QED. J. Formaliz. Reason., 9(1):101–148, 2016. doi: 10.6092/issn.1972-5787/4593. URL
https://doi.org/10.6092/issn.1972-5787/4593.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon Fernández Mir, and Scott
Morrison. Schemes in lean. arXiv preprint arXiv:2101.02602, 2019.

Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfectoid spaces. In Jas-
min Blanchette and Catalin Hritcu (eds.), Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA,
January 20-21, 2020, pp. 299–312. ACM, 2020. doi: 10.1145/3372885.3373830. URL
https://doi.org/10.1145/3372885.3373830.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, and Percy Liang. Unla-
beled data improves adversarial robustness. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
11190–11201, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
32e0bd1497aa43e02a42f47d9d6515ad-Abstract.html.

François Charton, Amaury Hayat, and Guillaume Lample. Deep differential system stability -
learning advanced computations from examples. CoRR, abs/2006.06462, 2020. URL https:
//arxiv.org/abs/2006.06462.

5

http://arxiv.org/abs/1905.10501
http://arxiv.org/abs/1905.10501
http://proceedings.mlr.press/v97/bansal19a.html
http://proceedings.mlr.press/v97/bansal19a.html
https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.6092/issn.1972-5787/4593
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/3372885.3373830
https://proceedings.neurips.cc/paper/2019/hash/32e0bd1497aa43e02a42f47d9d6515ad-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/32e0bd1497aa43e02a42f47d9d6515ad-Abstract.html
https://arxiv.org/abs/2006.06462
https://arxiv.org/abs/2006.06462

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial
robustness: From self-supervised pre-training to fine-tuning. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp.
696–705. IEEE, 2020. doi: 10.1109/CVPR42600.2020.00078. URL https://doi.org/10.
1109/CVPR42600.2020.00078.

Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 7057–7067, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html.

Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, and Hugh Leather. Programl:
Graph-based deep learning for program optimization and analysis. CoRR, abs/2003.10536, 2020.
URL https://arxiv.org/abs/2003.10536.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean Theorem Prover (system description). In Amy P. Felty and Aart Middeldorp
(eds.), Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pp. 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6\ 26. URL https:
//doi.org/10.1007/978-3-319-21401-6_26.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning
by context prediction. In 2015 IEEE International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pp. 1422–1430. IEEE Computer Society, 2015. doi:
10.1109/ICCV.2015.167. URL https://doi.org/10.1109/ICCV.2015.167.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language
understanding and generation. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
13042–13054, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929.

Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A metapro-
gramming framework for formal verification. Proc. ACM Program. Lang., 1(ICFP):34:1–34:29,
2017. doi: 10.1145/3110278. URL https://doi.org/10.1145/3110278.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=SkZxCk-0Z.

Bernd Finkbeiner, Christopher Hahn, Markus N. Rabe, and Frederik Schmitt. Teaching temporal
logics to neural networks. CoRR, abs/2003.04218, 2020. URL https://arxiv.org/abs/
2003.04218.

6

https://doi.org/10.1109/CVPR42600.2020.00078
https://doi.org/10.1109/CVPR42600.2020.00078
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://arxiv.org/abs/2003.10536
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/ICCV.2015.167
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://arxiv.org/abs/2010.11929
https://doi.org/10.1145/3110278
https://openreview.net/forum?id=SkZxCk-0Z
https://arxiv.org/abs/2003.04218
https://arxiv.org/abs/2003.04218

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

M. Ganesalingam and W. T. Gowers. A fully automatic theorem prover with human-style output.
J. Autom. Reason., 58(2):253–291, 2017. doi: 10.1007/s10817-016-9377-1. URL https:
//doi.org/10.1007/s10817-016-9377-1.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Learning
to prove with tactics. CoRR, abs/1804.00596, 2018. URL http://arxiv.org/abs/1804.
00596.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by pre-
dicting image rotations. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=S1v4N2l0-.

Jesse Michael Han and Floris van Doorn. A formal proof of the independence of the continuum
hypothesis. In Jasmin Blanchette and Catalin Hritcu (eds.), Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA,
January 20-21, 2020, pp. 353–366. ACM, 2020. doi: 10.1145/3372885.3373826. URL https:
//doi.org/10.1145/3372885.3373826.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learn-
ing can improve model robustness and uncertainty. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
15637–15648, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
a2b15837edac15df90721968986f7f8e-Abstract.html.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford,
Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam McCan-
dlish. Scaling laws for autoregressive generative modeling. CoRR, abs/2010.14701, 2020. URL
https://arxiv.org/abs/2010.14701.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environment
for theorem proving. CoRR, abs/1806.00608, 2018. URL http://arxiv.org/abs/1806.
00608.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, François Chollet, and Josef Ur-
ban. DeepMath—deep sequence models for premise selection. In Advances in Neural Information
Processing Systems, pp. 2235–2243, 2016.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJ6yPD5xg.

Jan Jakubuv and Josef Urban. ENIGMA: efficient learning-based inference guiding machine. In
Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke (eds.),
Intelligent Computer Mathematics - 10th International Conference, CICM 2017, Edinburgh,
UK, July 17-21, 2017, Proceedings, volume 10383 of Lecture Notes in Computer Science, pp.
292–302. Springer, 2017. doi: 10.1007/978-3-319-62075-6\ 20. URL https://doi.org/
10.1007/978-3-319-62075-6_20.

Jan Jakubův and Josef Urban. Hammering Mizar by learning clause guidance. arXiv preprint
arXiv:1904.01677, 2019.

Eric Jang, Coline Devin, Vincent Vanhoucke, and Sergey Levine. Grasp2vec: Learning object
representations from self-supervised grasping. In 2nd Annual Conference on Robot Learning,
CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, volume 87 of Proceedings of
Machine Learning Research, pp. 99–112. PMLR, 2018. URL http://proceedings.mlr.
press/v87/jang18a.html.

7

https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1007/s10817-016-9377-1
http://arxiv.org/abs/1804.00596
http://arxiv.org/abs/1804.00596
https://openreview.net/forum?id=S1v4N2l0-
https://doi.org/10.1145/3372885.3373826
https://doi.org/10.1145/3372885.3373826
https://proceedings.neurips.cc/paper/2019/hash/a2b15837edac15df90721968986f7f8e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a2b15837edac15df90721968986f7f8e-Abstract.html
https://arxiv.org/abs/2010.14701
http://arxiv.org/abs/1806.00608
http://arxiv.org/abs/1806.00608
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-62075-6_20
http://proceedings.mlr.press/v87/jang18a.html
http://proceedings.mlr.press/v87/jang18a.html

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Cezary Kaliszyk and Josef Urban. Femalecop: Fairly efficient machine learning connection prover.
In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (eds.), Logic for
Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-
20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in
Computer Science, pp. 88–96. Springer, 2015a. doi: 10.1007/978-3-662-48899-7\ 7. URL
https://doi.org/10.1007/978-3-662-48899-7_7.

Cezary Kaliszyk and Josef Urban. Mizar 40 for mizar 40. J. Autom. Reason., 55(3):245–
256, 2015b. doi: 10.1007/s10817-015-9330-8. URL https://doi.org/10.1007/
s10817-015-9330-8.

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas. J.
Symb. Comput., 69:109–128, 2015c. doi: 10.1016/j.jsc.2014.09.032. URL https://doi.org/
10.1016/j.jsc.2014.09.032.

Cezary Kaliszyk, Josef Urban, and Jirı́ Vyskocil. Lemmatization for stronger reasoning in large
theories. In Carsten Lutz and Silvio Ranise (eds.), Frontiers of Combining Systems - 10th In-
ternational Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings,
volume 9322 of Lecture Notes in Computer Science, pp. 341–356. Springer, 2015. doi: 10.1007/
978-3-319-24246-0\ 21. URL https://doi.org/10.1007/978-3-319-24246-0_
21.

Cezary Kaliszyk, François Chollet, and Christian Szegedy. Holstep: A machine learning dataset for
higher-order logic theorem proving. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=ryuxYmvel.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olsák. Reinforcement
learning of theorem proving. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
8836–8847, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
55acf8539596d25624059980986aaa78-Abstract.html.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
S1eZYeHFDS.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: contrastive unsupervised repre-
sentations for reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 5639–5650. PMLR, 2020. URL http://proceedings.
mlr.press/v119/laskin20a.html.

Gil Lederman, Markus N. Rabe, Sanjit Seshia, and Edward A. Lee. Learning heuristics for quantified
boolean formulas through reinforcement learning. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=BJluxREKDB.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Pzj6fzU6wkj.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representa-
tions. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=rJvJXZb0W.

8

https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-3-319-24246-0_21
https://openreview.net/forum?id=ryuxYmvel
https://proceedings.neurips.cc/paper/2018/hash/55acf8539596d25624059980986aaa78-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/55acf8539596d25624059980986aaa78-Abstract.html
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
http://proceedings.mlr.press/v119/laskin20a.html
http://proceedings.mlr.press/v119/laskin20a.html
https://openreview.net/forum?id=BJluxREKDB
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=rJvJXZb0W

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

mathlib. The lean mathematical library. In Jasmin Blanchette and Catalin Hritcu (eds.), Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020,
New Orleans, LA, USA, January 20-21, 2020, pp. 367–381. ACM, 2020. doi: 10.1145/3372885.
3373824. URL https://doi.org/10.1145/3372885.3373824.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. Deep generation of coq lemma
names using elaborated terms. In Nicolas Peltier and Viorica Sofronie-Stokkermans (eds.), Au-
tomated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4,
2020, Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pp. 97–118.
Springer, 2020. doi: 10.1007/978-3-030-51054-1\ 6. URL https://doi.org/10.1007/
978-3-030-51054-1_6.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer
Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VI, volume 9910 of Lecture Notes in Computer Science, pp. 69–84.
Springer, 2016. doi: 10.1007/978-3-319-46466-4\ 5. URL https://doi.org/10.1007/
978-3-319-46466-4_5.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Waleed Ammar, Annie
Louis, and Nasrin Mostafazadeh (eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Demonstrations, pp. 48–53. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/n19-4009. URL https://doi.org/10.
18653/v1/n19-4009.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 2967–2974. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/5689.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
encoders: Feature learning by inpainting. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2536–2544. IEEE
Computer Society, 2016. doi: 10.1109/CVPR.2016.278. URL https://doi.org/10.1109/
CVPR.2016.278.

Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the calculus of construc-
tions. In Michael G. Main, Austin Melton, Michael W. Mislove, and David A. Schmidt (eds.),
Mathematical Foundations of Programming Semantics, 5th International Conference, Tulane
University, New Orleans, Louisiana, USA, March 29 - April 1, 1989, Proceedings, volume 442
of Lecture Notes in Computer Science, pp. 209–228. Springer, 1989. doi: 10.1007/BFb0040259.
URL https://doi.org/10.1007/BFb0040259.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Markus N. Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
self-supervised skip-tree training. CoRR, abs/2006.04757, 2020. URL https://arxiv.org/
abs/2006.04757.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual
Models From Natural Language Supervision.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

9

https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-030-51054-1_6
https://doi.org/10.1007/978-3-030-51054-1_6
https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009
https://aaai.org/ojs/index.php/AAAI/article/view/5689
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1007/BFb0040259
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2006.04757
https://arxiv.org/abs/2006.04757

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
3788–3800, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
b2ab001909a8a6f04b51920306046ce5-Abstract.html.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, and Sorin Lerner. Generating correctness
proofs with neural networks. In Koushik Sen and Mayur Naik (eds.), Proceedings of the 4th
ACM SIGPLAN International Workshop on Machine Learning and Programming Languages,
MAPL@PLDI 2020, London, UK, June 15, 2020, pp. 1–10. ACM, 2020. doi: 10.1145/3394450.
3397466. URL https://doi.org/10.1145/3394450.3397466.

Peter Scholze. Liquid tensor experiment. https://xenaproject.wordpress.com/
2020/12/05/liquid-tensor-experiment/, 2020. Formalization available at https:
//github.com/leanprover-community/lean-liquid.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL
https://openreview.net/forum?id=HJMC_iA5tm.

Daniel Selsam, Jesse Michael Han, Leonardo de Moura, and Patrice Godefroid. Universal policies
for software-defined mdps. CoRR, abs/2012.11401, 2020. URL https://arxiv.org/abs/
2012.11401.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MASS: masked sequence to sequence
pre-training for language generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pp. 5926–5936. PMLR, 2019. URL http://proceedings.mlr.press/v97/song19d.
html.

Josef Urban. MPTP - motivation, implementation, first experiments. J. Autom. Reason., 33(3-4):
319–339, 2004. doi: 10.1007/s10817-004-6245-1. URL https://doi.org/10.1007/
s10817-004-6245-1.

Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In Christoph
Benzmüller and Bruce R. Miller (eds.), Intelligent Computer Mathematics - 13th International
Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture
Notes in Computer Science, pp. 315–323. Springer, 2020. doi: 10.1007/978-3-030-53518-6\ 24.
URL https://doi.org/10.1007/978-3-030-53518-6_24.

Josef Urban, Jirı́ Vyskocil, and Petr Stepánek. Malecop machine learning connection prover. In
Kai Brünnler and George Metcalfe (eds.), Automated Reasoning with Analytic Tableaux and
Related Methods - 20th International Conference, TABLEAUX 2011, Bern, Switzerland, July
4-8, 2011. Proceedings, volume 6793 of Lecture Notes in Computer Science, pp. 263–277.
Springer, 2011. doi: 10.1007/978-3-642-22119-4\ 21. URL https://doi.org/10.1007/
978-3-642-22119-4_21.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on

10

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://doi.org/10.1145/3394450.3397466
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid
https://openreview.net/forum?id=HJMC_iA5tm
https://arxiv.org/abs/2012.11401
https://arxiv.org/abs/2012.11401
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
https://doi.org/10.1007/s10817-004-6245-1
https://doi.org/10.1007/s10817-004-6245-1
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-642-22119-4_21
http://arxiv.org/abs/1807.03748

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In William W. Cohen, Andrew McCallum,
and Sam T. Roweis (eds.), Machine Learning, Proceedings of the Twenty-Fifth International
Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, volume 307 of ACM International
Conference Proceeding Series, pp. 1096–1103. ACM, 2008. doi: 10.1145/1390156.1390294. URL
https://doi.org/10.1145/1390156.1390294.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theo-
rems. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html.

Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-order logic. CoRR,
abs/1608.02644, 2016. URL http://arxiv.org/abs/1608.02644.

Freek Wiedijk. The De Bruijn factor, 2000. URL http://www.cs.ru.nl/F.Wiedijk/
factor/factor.pdf.

Yuhuai Wu, Markus N. Rabe, Wenda Li, Jimmy Ba, Roger B. Grosse, and Christian Szegedy. LIME:
learning inductive bias for primitives of mathematical reasoning. CoRR, abs/2101.06223, 2021.
URL https://arxiv.org/abs/2101.06223.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 6984–6994. PMLR, 2019. URL
http://proceedings.mlr.press/v97/yang19a.html.

11

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/1390156.1390294
https://proceedings.neurips.cc/paper/2020/hash/d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html
http://arxiv.org/abs/1608.02644
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
https://arxiv.org/abs/2101.06223
http://proceedings.mlr.press/v97/yang19a.html

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

A BACKGROUND

We briefly review the necessary background on interactive theorem proving and Lean. We refer the
reader to Appendix B for a detailed discussion of related work.

LEAN Lean is an interactive theorem prover and functional programming language de Moura et al.
(2015). It has an extremely active community and is host to some of the most sophisticated formalized
mathematics in the world, including scheme theory Buzzard et al. (2019), forcing Han & van Doorn
(2020), perfectoid spaces Buzzard et al. (2020), and condensed mathematics Scholze (2020).

Lean’s fundamental logic is a dependent type theory called the calculus of inductive construc-
tions Pfenning & Paulin-Mohring (1989). This design means that terms (4, x + y, f), types (N,
list Z, α→ β) and proofs are all represented with a single datatype called an expression. Given an
environment of available constants and definitions and a context Γ of variables, Lean can infer a type
α for each well-formed expression t. A proof term is a Lean expression whose type is a proposition.
This proof term serves as a checkable artifact for verifying the proposition. Lean uses a small, trusted
kernel to verify proof terms.

MATHLIB The primary repository of formalized mathematics in Lean is mathlib mathlib (2020).
At the time of writing, 140 contributors have contributed almost 500,000 lines of code; mathlib
sports over 46,000 formalized lemmas backed by over 21,000 definitionsmathlib runs the gamut of
mathematics, covering algebraic geometry, computability, measure theory, category theory and many
more topics. The range of theories and the monolithic, unified organization of mathlib makes it an
excellent foundation for a neural theorem proving dataset.

TACTICS Tactics in Lean are metaprograms Ebner et al. (2017), which can construct Lean expres-
sions, such as terms. A tactic state which tracks the list of open goals and other metadata is threaded
through each tactic invocation. Lean has special support for treating tactics as an extensible domain-
specific language (DSL); this DSL is how Lean is typically used as an interactive theorem prover. The
DSL amounts to a linear chain of comma-separated invocations. The process of interactive proving is
mediated through Lean’s language server, which will present the context and type for the current goal
in the proof to the user, dependent on where their cursor is in the source text. The tactic prediction
task is to predict the next tactic given this goal state. We extract supervised training data for this task
by extracting all human-supplied proof steps from Lean’s mathlib.

B RELATED WORK

B.1 RELATED WORK

MACHINE LEARNING IN INTERACTIVE THEOREM PROVING While automated theorem proving
has long been a major component of classical AI, among the first applications of machine learning
to interactive and automated theorem proving was lemma selection Urban (2004); Alama et al.
(2014); Kaliszyk & Urban (2015c); Irving et al. (2016). This includes the lemma selection in
hammers Blanchette et al. (2016) which use naive Bayes and other ML algorithms to filter relevant
lemmas to send to an automated theorem prover.

More recently, progress has been made in directly applying deep learning to prove theo-
rems Rocktäschel & Riedel (2017); Evans et al. (2018); Selsam et al. (2019); Lederman et al. (2020).
The logic and mathematics in some of these works is usually more geared to logical syllogisms or
industrial problems (e.g. logical search in a relational database or SAT solving).

Our work focuses on abstract mathematics as seen in mathematical research and education, which
is formalized in interactive theorem provers (ITPs) such as Lean. More directly related to our
work are machine learning based provers for tactic-based ITPs, including TacticToe Gauthier et al.
(2018) for HOL4; HOList/DeepHOL Bansal et al. (2019b;a); Paliwal et al. (2020) for HOL Light;
and CoqGym/ASTactic Yang & Deng (2019), ProverBot9001 Sanchez-Stern et al. (2020) and
Tactician Blaauwbroek et al. (2020) for Coq. These works, similar to ours, use learned models
which suggest tactics for a given tactic state, and when combined with a search algorithm, are able
to build complete proofs. A significant difference between our work and these others is that our

12

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Transformer-based policy is able to freely synthesize complete tactics, including tactic combinators
and tactics with expression parameters. Other models limit the tactic grammar to only produce tactics
with simple parameters (e.g. theorem names) or select tactics exactly as they appear in the dataset
(possibly with small modifications to variable names). Such approaches unnecessarily constrain the
model, especially in situations where the user needs to supply an existential witness (in the form of
an expression) to the tactic.

The Mizar Mathematical Library is based on first order logic, and derived Mizar datasets Urban
(2004); Kaliszyk & Urban (2015b) have formed important benchmarks and training data for many
first-order automatic theorem proving projects, including ones utilizing machine learning Urban et al.
(2011); Kaliszyk & Urban (2015a); Jakubuv & Urban (2017), deep learning Irving et al. (2016);
Jakubův & Urban (2019), and reinforcement learning Kaliszyk et al. (2018). More recently, language
modelling with a GPT-2 scale Transformer was applied to conjecturing and proof synthesis using
Mizar source code and other Mizar derived datasets Urban & Jakubuv (2020). Our work expands
on this direction in many ways. First, our dataset and interactive environment allow us to feed
intermediate proof states as input to the Transformer. While this requires more engineering than
feeding in raw source code, it greatly improves the results since our model can predict one step at a
time instead of a whole proof at once, which allows for proof search via backtracking. Furthermore,
while the Mizar language model was trained on a variety of proofs formats, some human-readable
and some formal, each dataset was used to train a separate Transformer. Our work shows a significant
advantage of co-training for theorem proving.

Metamath is an another interactive theorem prover which does not use tactics, but instead relies on
a low-level proving framework. Neural provers for Metamath such as Holophrasm Whalen (2016),
MetaGen Wang & Deng (2020), and GPT-f Polu & Sutskever (2020) all use sequence or language
models to generate tactics. Specifically, our work builds on Metamath GPT-f Polu & Sutskever
(2020) (MM GPT-f), which uses a Transformer architecture to generate proof steps. Unlike MM
GPT-f, which trained primarily on the Metamath proof step objective (i.e. , guessing the next lemma
to be applied to a goal, and subsumed by our NEXTLEMMA task, c.f. Section 2.1), we co-train on a
diverse suite of self-supervised tasks extracted from Lean proof terms and demonstrate significant
improvements in theorem proving performance.

REASONING WITH TRANSFORMERS Besides theorem proving, a number of recent papers have
shown that language models, especially Transformers, are capable of something like mathematical
and logical reasoning in integration Lample & Charton (2020), differential equations Charton et al.
(2020), Boolean satisfiability Finkbeiner et al. (2020), and inferring missing proof steps Li et al.
(2021).

A closely-related vein of work has shown that pre-training Transformers on data engineered to reflect
inductive biases conducive to mathematical reasoning is beneficial for downstream mathematical
reasoning tasks Rabe et al. (2020); Wu et al. (2021). Our work both builds on and departs from these
ideas in several crucial aspects. Unlike skip-tree training Rabe et al. (2020), which focuses solely on
predicting masked subterms of theorem statements, PACT derives its self-supervised training data
from far more complex proofs. Unlike LIME Wu et al. (2021), which uses purely synthetic data and
is presented as a pre-training methodology, our self-supervised tasks are extracted from non-synthetic
human proofs. Moreover, we show that not only are Transformers capable of performing well on
auxiliary tasks gathered from low-level proof artifact data, but that we can directly leverage this data
via co-training to greatly improve performance on high-level theorem proving.

Neural tactic proving can be seen as a special case of neural program synthesis, and our ideas may be
applicable there as well, e.g. by co-training a program synthesis model using self-supervised data
extracted from compiled low-level machine instructions. A related approach was taken by Cummins
et al. (2020), where a GNN is conditioned on a low-level IR to assist in compiler optimizations. In
a similar vein to our work, Selsam et al. (2020) hook a Transformer encoder into the interpreter of
a Scheme dialect with a primitive for nondeterministic choice and demonstrate meta-learning after
training it to function as an oracle on a diverse suite of tasks.

SELF-SUPERVISED LEARNING METHODS Recently, self-supervised methods have revolutionized
machine learning models across various domains, such as natural language understanding (Lo-
geswaran & Lee, 2018; Radford et al., 2018; Devlin et al., 2019; Song et al., 2019; Dong et al., 2019;

13

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Raffel et al., 2020; Conneau & Lample, 2019), computer vision (Vincent et al., 2008; Doersch et al.,
2015; Noroozi & Favaro, 2016; Pathak et al., 2016; Gidaris et al., 2018; van den Oord et al., 2018),
and reinforcement learning (Jaderberg et al., 2017; Jang et al., 2018; Laskin et al., 2020). These
methods rely on automatically generating labels for a large quantity of cheaply mined data, which
is then used to create auxiliary tasks. Training on the auxiliary tasks has been shown to greatly
improve performance sample efficiency on downstream tasks, and even improve the adversarial
robustness of models (Hendrycks et al., 2019; Carmon et al., 2019; Chen et al., 2020). For text, the
most popular approach is based on language modeling with next-word prediction tasks (Radford et al.,
2018; Devlin et al., 2019). The advent of the Transformer architecture (Vaswani et al., 2017) and
BERT style pretraining (Devlin et al., 2019) achieved a huge improvement in many natural language
understanding tasks. Since then, an explosion of research activity around better pretraining tasks has
further improved the quality of language models.

Our proposed method also makes use of automatically generated labels on a large quantity of
cheaply-mined data, i.e. extant proof artifacts. The notable differences from existing methods are
(1) our auxiliary tasks are specifically designed for theorem proving, and (2) most of the existing
text-based self-supervised methods use auxiliary tasks for pretraining, whereas we investigate whether
co-training can bring further benefits and make better use of auxiliary tasks.

MACHINE LEARNING WITH PROOF ARTIFACTS The idea of mining low-level proof artifacts
was previously explored in the context of automated lemma extraction Kaliszyk & Urban (2015c);
Kaliszyk et al. (2015). It has also been previous observed that training on fully elaborated Coq
terms Nie et al. (2020) helps with a downstream theorem naming task. However, similar to previous
work on skip-tree training, their dataset focuses solely on theorem statements, i.e. types, does not
cover the far more complex proof terms, and does not evaluate the effect of such training on theorem
proving evaluations.

While there exist environments and datasets for other formal mathematics libraries Kaliszyk et al.
(2017); Li et al. (2021); Huang et al. (2018); Kaliszyk & Urban (2015b), LEANSTEP is the first
and only tactic proof dataset for the Lean theorem prover. This makes available a large set of
formal mathematical data to researchers covering a diverse and deep spectrum of pure mathematics.
Moreover, LEANSTEP is unique in that it contains both high-level human-written tactics as well as
kernel-level proof terms, which enables the extraction of self-supervised tasks for PACT (Section 2.1).

C THE LEANSTEP MACHINE LEARNING ENVIRONMENT

We instrument Lean for automatic theorem proving with a language model, including utilities for
(1) setting the runtime environment at a particular theorem (ensuring proofs are never circular), (2)
serializing the tactic state as environment observations for a theorem-proving agent, (3) exposing
Lean’s parser to re-parse strings emitted by a language model into tactic invocations, and (4) executing
and capturing the results of the re-parsed tactics, enabling the recording of trajectories for expert
iteration and reinforcement learning.

In addition to this general instrumentation, we implement a generic best-first search algorithm for
theorem proving; it forms the basis for our evaluations and is written entirely in Lean itself. The
algorithm is parametrized by an oracle
Ω : tactic_state → list (string × float) that accepts a tactic state and returns a list
of strings and heuristic scores. The search is controlled by a priority queue of search nodes, which
consist of a tactic state (i.e. a partial proof) and search metadata. In the outer loop of the algorithm—
which continues until either the theorem is completely proved (i.e. no goals are remaining on the
current node), the priority queue is empty (i.e. the search has failed), or a pre-set timeout or budget
of iterations is exceeded—we pop a node off the queue, serialize the associated tactic state and
use it query the oracle, producing a list of candidates cs : list (string × float). We then
loop over the candidates cs to produce a list of new search nodes, by re-parsing each string into a
tactic and adding a new node if the parsed tactic advances the proof without raising errors. These
new search nodes are then re-inserted into the queue in order of decreasing priority and the search
continues. We optionally constrain the search by enforcing maximum width and depth limits wmax

and dmax that guard insertion into the queue. When considering nodes for insertion, any node whose
depth exceeds dmax is ignored, and all nodes are ignored if the queue size is strictly larger than wmax.

14

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Due to the flexibility in assigning heuristic scores and in choosing the maximum width and depth
hyperparameters, our algorithm is quite general—for example, it reduces to (1) a greedy depth-first
search when wmax = 0, and (2) a naı̈ve breadth-first search when heuristic scores are identical and
wmax = dmax =∞.

Our interface is completely generic, enabling researchers to seamlessly integrate custom backends
for rapid experimentation. We provide three default backends. The tidy backend queries a constant
oracle which always returns a curated list of tactics. When run as a greedy depth-first search, the
tidy proof search replicates the logic of an eponymous tactic in Lean’s mathlib, which was
modeled after the human-like automated theorem prover proposed by Ganesalingam & Gowers
(2017) and is one of Lean’s strongest general purpose tactics; it becomes even stronger when allowed
to backtrack, as in the full best-first search. The fairseq backend supports querying a locally
hosted Transformer via the Fairseq CLI Ott et al. (2019), returning a list of candidates found by beam
search, ranked by cumulative log-probabilities. Finally, the gptf backend queries our models hosted
by the OpenAI API Brown et al. (2020), returning a list of candidates sampled from the model along
with their cumulative log-probabilities.

D ADDITIONAL INFORMATION: DATASETS

D.1 HUMAN TACTIC PROOF STEPS

We describe our datasets and instrumentation of the Lean theorem prover, including data extraction
procedures and a generic best-first search algorithm for automated theorem proving with a language
model. While our data pipeline can be instantiated at any Lean project, enabling the generation
of bespoke, domain-specific datasets, we henceforth focus on mathlib, Lean’s mathematical
components library.

As seen in Figure 2, Lean tactic proofs consist of comma-separated tactic commands. At the start of
the proof the user is prompted with a goal to prove, preceded by a list of hypotheses and declared local
variables. Our human tactic proof step dataset consists of source-target pairs of strings, one for each
tactic command in the Lean core library and in mathlib. The source string is the pretty-printed
tactic state. The target string is the tactic command as entered by a human in the source code to
modify the tactic state. We train language models autoregressively to complete the source with the
target. We refer to the task of predicting the next human tactic proof step given a tactic state as the
proofstep objective.

Lean’s parser is special in that syntax can change significantly mid-code. While this makes it
possible to utilize custom mathematical syntax and domain specific tactic languages, it makes it
near impossible to parse Lean code outside of using Lean itself. Our solution was a mixed approach
where we used Lean’s extensive meta-programming framework to hook into the Lean parser and
tactic framework, extracting the tactic goals and various parser position information. Then we used a
simple homemade Lean parser to combine this information and extract the tactic commands.

MATHLIB COMMITS USED TO GENERATE DATA

Our primary dataset was extracted from commit 33483a3de6 of mathlib. The
future-mathlib data was extracted from commit 95454452f6 of mathlib.

PRE-TRAINING DATASETS

We pre-train on WebMath as described in Polu & Sutskever (2020). WebMath pre-trained mod-
els are also pre-trained on the mix used by GPT-3 Brown et al. (2020) which includes a filtered
CommonCrawl, WebText2, Book1, Book2 and Wikipedia. WebMath includes Python-only
GitHub data, as well as arXiv and Math StackExchange.

From these datasets, a potential risk for test-set contamination (presence of mathlib) exists for the
crawled datasets, namely CommonCrawl, WebText2, and (in case of a filtering bug) Python-only
GitHub. The other datasets (in particular arXiv and Math StackExchange) may contain short
references of mathlib code but in shape and forms that would not lead to effective contamination.

15

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Masked proof term Tactic state Term that fulfils goal

_ ? (P ? t r ue) ? P
? H, i f f . dcases_on H
 (? H? H?, H? t r i vi al)

? H, _
H : P ? t r ue
? P

i f f . dcases_on H
 (? H? H?, H? t r i vi al)

? H, i f f . dcases_on H
 (? H? H?, _)

H? : P ? t r ue
H? : t r ue ? P
? P

H? t r i vi al

? H, i f f . dcases_on H
 (? H? H?, H? _)

H? : P ? t r ue
H? : t r ue ? P
? t r ue

t r i vi al

? H, _ H (? H? H?,
 H? t r i vi al)

H : P ? t r ue
? (P ? t r ue) ?
((P ? t r ue) ?
(t r ue ? P) ? P)
? P

i f f . dcases_on

l emma i f f _of _t r ue { P : Pr op}
 : (P ? t r ue) ? P : =
begi n
 i nt r o H,
 cases H wi t h H? H?,
 appl y H?,
 t r i vi al
end

TYPE ? { P : Pr op} , (P ? t r ue) ? P NAME i f f _of _t l ean

GOAL P : Pr op ? (P ? t r ue) ? P PROOFSTEP i nt r o H

GOAL P : Pr op, H : P ? t r ue ? P PROOFSTEP cases H wi t h H? H?

GOAL P : Pr op, H? : P ? t r ue, H? : t r ue ? P ? t r ue PROOFSTEP t r i vi al

GOAL P : Pr op, H? : P ? t r ue, H? : t r ue ? P ? P PROOFSTEP appl y H?

GOAL P : Pr op, H : P ? t r ue ? (P ? t r ue) ? ((P ? t r ue) ? (t r ue ? P)
? P) ? P NEXT_LEMMA i f f . dcases_on

RESULT ? { P : Pr op} (H : P ? t r ue) , PREDI CT H (? (H? : P ? t r ue) (H? :
t r ue ? P) , H? t r i vi al) TYPE (P ? t r ue) ? ((P ? t r ue) ? (t r ue ? P)
? P) ? P

RESULT ? { P : Pr op} (H : P ? t r ue) , PREDI CT H (? (H? : P ? t r ue) (H? :
t r ue ? P) , H? t r i vi al) TYPE (P ? t r ue) ? ((P ? t r ue) ? (t r ue ? P)
? P) ? P

. . .

Figure 2: An illustration of our data extraction procedures. The entry point is the top-level theorem
iff_of_true. (Top) We gather human proof step data by stepping through the supplied tactic proof
script, recording the tactic state and subsequent tactic application. We train a Transformer language
model on the sequence GOAL ... PROOFSTEP When using our model for proof search, we
only prompt it using GOAL ... PROOFSTEP to generate tactic applications. (Bottom) We gather
data for PACT by recursing through all subterms of the proof term produced by the tactic script.
We generate training examples in a self-supervised fashion, creating many auxiliary tasks which we
disambiguate from the primary PROOFSTEP task using specially chosen prompt keywords.

To assess the contamination risk related with the crawled datasets, we run full-scans searching for the
following mathlib-specific strings on CommonCrawl, WebText2, and Python-only GitHub.
Note that we expect these strings to match even if presented in HTML on the Web as these datasets
contain text rendered versions of the page crawled online.

"{ rintro 〈"
"{ rcases h"
"irrational_sqrt_two : irrational (sqrt 2)"

Despite the two first strings occurring respectively 266 and 101 times in mathlib, we found 0
occurrence of any of the three strings in WebText2, Python-only GitHub, or CommonCrawl;
negating any suspicion of effective test-set contamination.

At the same time we looked for the following Metamath specific and HOL specific strings:

Metamath:
"(ph -> A = C)"
"(ph -> A R C)"
"(sqrt 8 2) e/ QQ"

HOL:
"apply (rule "
"apply (drule "

We found 0 occurrence of the Metamath-related strings but interestingly found a non-negligible
amount of HOL-related documents, which does not constitute a test-set contamination but potentially
benefits the downstream tasks studied in this paper.

DATASET SIZES

• tactic: ≈128K examples.

• mix1

– Next lemma prediction: ≈2.5M examples
– Proof term prediction: ≈2.9M examples

• mix2

16

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

– Skip-proof: ≈1.7M examples
– Type-prediction: ≈1.7M examples
– Tactic state elaboration: ≈346K examples
– Proof term elaboration: ≈1.0M examples
– Premise classification: ≈9.3M examples
– Local context classification: ≈2.0M examples
– Theorem naming: ≈32K examples.

EXAMPLE DATAPOINTS

We present datapoints extracted from a toy example, namely the proof of the Peirce identity, viz.

lemma peirce_identity {P Q :Prop} : ((P → Q) → P) → P :=
begin

apply or.elim (em P),
intros h _,
exact h,
tauto!

end

From this, we can extract four tactic datapoints (i.e. human-generated tactic proof steps):

-- GOAL P Q : Prop ` ((P → Q) → P) → P PROOFSTEP apply or.elim (em P)
-- GOAL P Q : Prop ` P → ((P → Q) → P) → P P Q : Prop ` ¬P → ((P →

Q) → P) → P PROOFSTEP intros h _
-- GOAL P Q : Prop, h : P, α̌ : (P → Q) → P ` P P Q : Prop ` ¬P → ((P

→ Q) → P) → P PROOFSTEP exact h
-- GOAL P Q : Prop ` ¬P → ((P → Q) → P) → P PROOFSTEP tauto!

In contrast, we can extract dozens of raw PACT datapoints. Due to space constraints, we list a
representative sample of four such datapoints, from each of which we can derive the nine self-
supervised auxiliary PACT tasks studied in our present work. For example, proof term prediction is
precisely predicting the "proof_term" given the concatenation of "hyps", "`", and the "goal",
skip-proof is predicting the "proof_term" given "result", etc.

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[true, false, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, true, false, false, false, false,
false, false],

"goal":"∀ {b : Prop} [_inst_1 : decidable P], ¬(P → b) ↔ P ∧ ¬b",
"proof_term":"decidable.not_imp",

17

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((PREDICT Q
(classical.prop_decidable P)).mp α̌_1).dcases_on (λ (α̌_1_left : P)
(α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["decidable.not_imp", "∀ {a b : Prop} [_inst_1 :
decidable a], ¬(a → b) ↔ a ∧ ¬b"],

"goal_is_prop":true,
"verbose_proof_term":"@decidable.not_imp P",
"verbose_goal":"∀ {b : Prop} [_inst_1 : decidable P], ¬(P → b) ↔ P ∧
¬b",

"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (classical.prop_decidable (P →
Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (@iff.mp (¬(P → Q)) (P ∧ ¬
Q) (PREDICT Q (classical.prop_decidable P)) α̌_1).dcases_on (λ
(α̌_1_left : P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌)) (λ (α̌_1 :
P), @absurd P P α̌_1 α̌))"}

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[false, true, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, false, false, false, false, false,
false, false],

"goal":"Prop",
"proof_term":"Q",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (decidable.not_imp.mp α̌
_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q), absurd α̌_1_left α̌
)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["Q", "Prop"],
"goal_is_prop":false,
"verbose_proof_term":"Q",
"verbose_goal":"Prop",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (classical.prop_decidable (P →
Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((@decidable.not_imp P
PREDICT (classical.prop_decidable P)).mp α̌_1).dcases_on (λ (α̌_1_left
: P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌)) (λ (α̌_1 : P),
@absurd P P α̌_1 α̌))"}

DATAPOINT:

18

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[true, true, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, true, false, false, false, false,
false, false],

"goal":"∀ [_inst_1 : decidable P], ¬(P → Q) ↔ P ∧ ¬Q",
"proof_term":"decidable.not_imp",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((PREDICT
(classical.prop_decidable P)).mp α̌_1).dcases_on (λ (α̌_1_left : P)
(α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["decidable.not_imp", "∀ {a b : Prop} [_inst_1 :
decidable a], ¬(a → b) ↔ a ∧ ¬b"],

"goal_is_prop":true,
"verbose_proof_term":"@decidable.not_imp P Q",
"verbose_goal":"∀ [_inst_1 : decidable P], ¬(P → Q) ↔ P ∧ ¬Q",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (classical.prop_decidable (P →
Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (@iff.mp (¬(P → Q)) (P ∧ ¬
Q) (PREDICT (classical.prop_decidable P)) α̌_1).dcases_on (λ
(α̌_1_left : P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌)) (λ (α̌_1 :
P), @absurd P P α̌_1 α̌))"}

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[false, false, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],

19

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

tactic
tactic proof steps GOAL <TacticState> PROOFSTEP <Tactic>

mix1
next lemma prediction GOAL <TacticState> NEXTLEMMA apply (<NextLemma>)
proof term prediction GOAL <TacticState> PROOFTERM exact (<ProofTerm>)

mix2
skip proof RESULT <MaskedProofTerm> SKIPPROOF <ProofTerm>
type prediction RESULT <MaskedProofTerm> PREDICTTYPE <Type>
tactic state elaboration GOAL <TacticState> ELABGOAL <ElaboratedTacticState>
proof term elaboration PROOFTERM <ProofTerm> ELABPROOFTERM <ElaboratedProofTerm>
premise classification GOAL <TacticState> CLASSIFYPREMISE <Premise> <True|False>
local context classification GOAL <TacticState> CLASSIFYLOCALS <LocalsList>
theorem naming TYPE <Type> NAME <Name>

Figure 3: Auto-regressive objectives used for each task described in Section 2. Placeholders repre-
sented with brackets (such as <TacticState>) are substituted by the context-completion pairs
from each datasets in the prompts above. Each task is presented to the model with its respective key-
word (PROOFSTEP, NEXTLEMMA,...). We wrap the completions of mix1 tasks (with apply(...)
and exact(...) respectively) as a hint that they are related to the respective Lean tactics; this is
not directly possible for the other tasks.

["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, false, false, false, false, false,
false, false],

"goal":"Π (a : Prop), decidable a",
"proof_term":"classical.prop_decidable",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (decidable.not_imp.mp α̌
_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q), absurd α̌_1_left α̌
)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["classical.prop_decidable", "Π (a : Prop), decidable a"],
"goal_is_prop":false,
"verbose_proof_term":"classical.prop_decidable",
"verbose_goal":"Π (a : Prop), decidable a",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (PREDICT (P → Q)) α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((@decidable.not_imp P Q
(PREDICT P)).mp α̌_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q),
@absurd P P α̌_1_left α̌)) (λ (α̌_1 : P), @absurd P P α̌_1 α̌))"}

E ADDITIONAL INFORMATION: EXPERIMENTS

E.1 ABLATION OF WEBMATH PRE-TRAINING

We trained models without the initial WebMath pre-training step. As expected, co-trained models
suffer from this ablation but we were more interested in measuring the effect on pre-trained models
on mix-1 and mix-2, as they may not benefit from WebMath as much due to the two successive
pre-training steps.

We report the min validation losses in Figure 4 (we plan to report evaluation pass-rates as well in
a later version of this paper). WebMath appears as substantially beneficial even in the sequential
pre-training setup. This indicates that PACT is not a replacement for WebMath pre-training, but
rather a complementary method for enhancing the performance of language models for theorem
proving.

20

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Model Tokens total Early-stop mix1 mix2 tactic

Baselines
tt 32B 1B 1.59

Pre-training
m1 32B 20B 0.12
m2 32B 25B 0.10
m1 + m2 32B 27B 0.13 0.10
m1 > tt 32B 1B 1.26
m1 + m2 > tt 32B 1B 1.16

Co-training
m1 + tt 32B 27B 0.11 1.12
m1 + m2 + tt 96B 71B 0.10 0.11 1.07
Pre-training and co-training
m2 > m1 + tt 32B 26B 0.11 1.09

Figure 4: Validation losses achieved in the pre-training and co-training setups without WebMath
pre-training. See Figure 1 for a description of the columns and the models nomenclature used.

Model Tokens total Early-stop mix1 mix2 tactic Pass-rate

121M 96B 82B 0.13 0.10 1.23 35.1%
163M 96B 80B 0.12 0.09 1.11 39.8%
837M 96B 71B 0.09 0.09 0.91 48.4%

Figure 5: Validation losses and pass-rates achieved for various model sizes using PACT. See Figure 1
for a description of the columns. The setup used is WebMath > mix1 + mix2 + tactic.

We speculate that in the presence of WebMath pre-training, features emerging from mix-1/mix-2
pre-training steps may be of higher quality, leading to a more effective transfer to the downstream
PROOFSTEP objective.

E.2 EFFECT OF MODEL SIZE

Finally we study the effect of model sizes. The setup used is the best setup reported in Figure 1,
WebMath > mix1 + mix2 + tactic. The 837M model is our main model. The 163M
and 121M models respectively have 12 and 6 layers, with dmodel = 768. The learning rates are
respectively adjusted to 0.0014 and 0.0016.

As demonstrated by Figure 5, performance is highly correlated with model size, with larger models
generally achieving better generalization even in the overfitted regime. We leave as future work a
careful study of how evaluation performance is affected when scaling to multi-billion parameter
models, as well as the feasibility of deploying them for interactive use by Lean users.

CHAINED TACTIC PREDICTION

Individual Lean tactics are chained together with commas. However, the Lean interactive tactic DSL
also includes a number of other tactic combinators for creating composite tactics. A frequently used
combinator is the infix semicolon t; s which will perform the tactic t and then apply the tactic
s to each of the resulting subgoals produced by t. Our data pipeline for human tactic proof steps
treats these semicolon-chained tactics as a single string for the language modeling objective. Thus,
our models learn to occasionally emit multiple-step tactic predictions using semicolons. For example,
wm-to-tt-m1-m2 solved the following lemma in category theory with a single prediction chaining
four tactics in a row:

theorem category_theory.grothendieck.congr
{X Y : grothendieck F} {f g : X −→ Y} (h : f = g) :

21

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 1: Counting the number of semicolon-chained tactics predicted by our models that appear
in successful proofs. Each column headed by a number n; indicates the number of times that a
suggestion appeared with n occurrences of ‘;’.

MODEL 1; 2; 3; 4; MEAN
wm-to-tt 215 49 2 0 1.199
wm-to-tt-m1 186 39 5 1 1.225
wm-to-tt-m1-m2 328 82 12 3 1.271

f.fiber = eq_to_hom (by subst h) � g.fiber :=
begin
rcases X; rcases Y; subst h; simp

end

One way of measuring the sophistication of predicted tactics is to consider the number of successful
proofs on the evaluation set which have this composite form using semicolon-chaining. We display
this analysis in Table 1, which shows that training with PACT in addition to the human-made tactics
causes longer semicolon-chained tactics to be successfully predicted during theorem proving. This is
remarkable because the semicolon idiom is specific to the tactic DSL which does not occur in the
PACT data whatsoever, and yet the co-training causes longer and more frequent successful composite
tactic predictions.

THEOREM NAMING CASE STUDY

We included theorem naming as part of the PACT task suite. By mathlib convention, theorem
names are essentially snake-cased, natural language summaries of the type signature of a theorem,
and so the theorem naming task is analogous to a formal-to-informal translation task. We evaluate
the ability of our best model (in terms of theorem proving success rate) wm-to-tt-m1-m2 on
its ability to guess theorem names on the completely unseen future-mathlib set of theorems.
The distribution shift inherent in the future-mathlib dataset particularly impacts the theorem
naming task, because many of the ground-truth names will involve names for concepts that were only
defined in mathlib after we extracted our training data.

On the ≈2.8K future-mathlib theorems, we queried wm-to-tt-m1-m2 for up to N = 16
candidates. We order these candidates into a list xs by decreasing cumulative log-probability and
calculate the top-K accuracy by checking if any of the first K candidates of xs match the ground
truth exactly. The model wm-to-tt-m1-m2 was able to achieve 20.1% top-1 accuracy, 21.1%
top-3 accuracy, 26.7% top-10 accuracy, and 30.0% top-16 accuracy. We display a sample of correct
top-1 guesses (Figure 6) and a sample of failed guesses in (Figure 7). We note that the failed guesses,
while containing no syntactic matches, are both semantically reasonable and syntactically very similar
to the ground truth.

TEST SET EVALUATION BREAKDOWN BY MODULE

Lean’s mathlib is organized into top-level modules, which roughly organize theorems into mathe-
matical subject area. In Figure 8, we break down the evaluation results on our test set between
our PACT-trained models wm-to-tt-m1-m2 and wm-to-tt-m1 and our baselines wm-to-tt
and tidy. We see that full PACT mostly dominates over co-training on just the mix1 tasks over all
subject areas, and that wm-to-tt-m1 dominates the model wm-to-tt trained on human tactic
proof steps only.

BASELINE DESCRIPTION

The tidy backend is determined by a constant oracle

Ω : tactic_state → list (string × float)

which always returns the same list of tactics, namely:

22

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Correct top-1 guesses

Theorem statement

∀ {α : Type u_1} {β : Type u_2} [_inst_1 : decidable_eq α]
[_inst_2 : decidable_eq β] (s : finset α) (t : finset β),
s.product t = s.bUnion
(λ (a : α), finset.image (λ (b : β), (a, b)) t)

Ground truth finset.product_eq_bUnion

Theorem statement
∀ {α : Type u_1} {β : Type u_2} [_inst_1 : topological_space α]
[_inst_2 : topological_space β] {f : α → β},
quotient_map f → function.surjective f

Ground truth quotient_map.surjective

Theorem statement
∀ {α : Type u_1} {β : Type u_2} (f : α → option β)
(x : option α), x.pbind (λ (a : α) (_x : a ∈ x), f a) = x.bind f

Ground truth option.pbind_eq_bind

Theorem statement

∀ {C : Type u1} [_inst_1 : category_theory.category C]
{G : C ⇒ C} [_inst_2 : category_theory.comonad G]
{A B : category_theory.comonad.coalgebra G} (h : A.A ∼= B.A)
(w : A.a � G.map h.hom = h.hom � B.a),
(category_theory.comonad.coalgebra.iso_mk h w).hom.f = h.hom

Ground truth category_theory.comonad.coalgebra.iso_mk_hom_f

Theorem statement

∀ {k : Type u_1} {E : Type u_2} [_inst_1 : is_R_or_C ,k]
[_inst_2 : inner_product_space k E]
[_inst_4 : normed_space R E] [_inst_5 : is_scalar_tower R k E]
(p x : E × E),
⇑(fderiv_inner_clm p) x =
has_inner.inner p.fst x.snd + has_inner.inner x.fst p.snd

Ground truth fderiv_inner_clm_apply

Figure 6: A sample of correct top-1 guesses by our best model wm-to-tt-m1-m2 on the theorem
naming task. We performed this experiment on the future-mathlib evaluation set, which
comprises entirely unseen theorems added to mathlib only after we last extracted training data.

23

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Incorrect guesses

Theorem statement
∀ {α : Type u_1} (t : ordnode α) (x : α),
t.dual.find_min′ x = ordnode.find_max′ x t

Guesses (top 8)
ordinal.find_min′_eq, ordinal.find_min′_eq_max′, ordinal.find_min′_def,
ordinal.find_min′_eq_max, ordinal.find_min′, ordinal.dual_find_min′,
ordinal.find_min′_gt, ordinal.find_min′_q

Ground truth ordnode.find_min′_dual

Theorem statement

∀ {α : Type u_1} {β : Type u_3} {γ : Type u_5} [_inst_1 :
measurable_space α] [_inst_3 : measurable_space β]
[_inst_5 : measurable_space γ] {µ : measure_theory.measure α}
{ν : measure_theory.measure β}
[_inst_8 : measure_theory.sigma_finite ν]
{f : α × β → γ},
ae_measurable f (µ.prod ν) → (∀m(x : α) ∂µ,
ae_measurable (λ (y : β), f (x, y)) ν)

Guesses (top 8)

measure_theory.ae_prod, measure_theory.ae_of_ae_prod,
measure_theory.ae_eq_prod_of_ae, measure_theory.ae_ae_of_ae_prod,
measure_theory.ae_measure_prod_mk_left,
measure_theory.ae_prod_of_ae_prod,
measure_theory.ae_measure_prod, measure_theory.ae_eq_refl

Ground truth ae_measurable.prod_mk_left

Theorem statement

∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3}
{f : filter α} {h : set α → set β} {m : γ → β}
{l : filter γ}, filter.tendsto m l (f.lift′ h) ↔
∀ (s : set α), s ∈ f → (∀f (a : γ) in l, m a ∈ h s)

Guesses (top 8) filter.tendsto_lift′_iff, filter.tendsto_lift′_def

Ground truth filter.tendsto_lift′

Theorem statement
∀ {R : Type} [_inst_1 : comm_ring R]
{d : Z} (f : Z√d →+∗ R),

↑(⇑(zsqrtd.lift.symm) f) = ⇑f zsqrtd.sqrtd

Guesses (top 8)
zsqrtd.coe_lift_symm, zsqrtd.coe_lift.symm, zsqrtd.lift.coe_symm_apply,
zsqrtd.lift_symm_apply, zsqrtd.lift.coe_coe_symm,

zsqrtd.lift.coe_symm_coe,
zsqrtd.lift.symm_coe_zsqrtd, zsqrtd.lift_symm_to_zsqrtd

Ground truth zsqrtd.lift_symm_apply_coe

Figure 7: A sample of incorrect guesses by our best model wm-to-tt-m1-m2 on the theorem
naming task. We performed this experiment on the future-mathlib evaluation set, which
comprises entirely unseen theorems added to mathlib only after we last extracted training data.
Most of the top-8 guesses displayed in the above table are very similar to the ground truth, in some
cases being equivalent up to permutation of underscore-separated tokens. Note that for the first
example, the concept of ordnode was not in the training data whatsoever and all predictions are in
the syntactically similar ordinal namespace.

24

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

lo
gi

c

al
ge

br
a

or
de

r

da
ta

ca
te

go
ry

_t
he

or
y

co
nt

ro
l

gr
ou

p_
th

eo
ry

co
m

bi
na

to
ric

s

to
po

lo
gy

lin
ea

r_
al

ge
br

a

se
t_

th
eo

ry

an
al

ys
is

ge
om

et
ry

dy
na

m
ics

co
m

pu
ta

bi
lit

y

nu
m

be
r_

th
eo

ry

m
ea

su
re

_t
he

or
y

fie
ld

_t
he

or
y

rin
g_

th
eo

ry

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Test Set Evaluation Breakdown By Modules
wm-to-tt-m1-m2 (PACT full)
wm-to-tt-m1 (PACT mix1 only)
wm-to-tt (tactic step only)
tidy (baseline)

Figure 8: A breakdown of theorem proving success rate on the test set for wm-to-tt-m1-m2,
wm-to-tt-m1, wm-to-tt, and the tidy baseline across top-level modules in Lean’s mathlib.
We see that wm-to-tt-m1-m2 mostly dominates wm-to-tt-m1 and the models trained using
PACT dominate the model wm-to-tt trained on human tactic proof steps.

meta def tidy_default_tactics : list (string × float) :=
list.map (flip prod.mk 0.0) [

"refl"
, "exact dec_trivial"
, "assumption"
, "tactic.intros1"
, "tactic.auto_cases"
, "apply_auto_param"
, "dsimp at ∗"
, "simp at ∗"
, "ext1"
, "fsplit"
, "injections_and_clear"
, "solve_by_elim"
, "norm_cast"

]

Unlike the gptf backend, which generates a list of candidates in parallel independently, tidy enjoys
the advantage that the list of tactics it emits is carefully chosen and ordered in order to optimize
the proof search—this is based on the “waterfall” technique of the human-style automated theorem
prover described in (Ganesalingam & Gowers (2017)).

COMPUTATIONAL RESOURCE ESTIMATES

For each evaluation loop over the test set, we distributed the theorems over a pool of 32 CPU
workers whose inference requests were load-balanced over 4 V100 GPUs. Each evaluation required
≈10 hours with ≈30% GPU utilization. We observed that our evaluation was bottlenecked by
inference and in practice, we hosted up to three evaluation loops at once on a VM with 80 logical
cores without achieving full CPU utilization. In addition to the wall-clock timeout of 600s, we also
limited the proof search to a logical timeout of 512 iterations, where one iteration corresponds to a
single expansion of a node of the BFS search tree. In practice, so much time was spent either blocked
on inference or performing the tactic executions in the inner loop of each iteration that we rarely
exceeded the logical timeout, usually exceeding the wall-clock timeout instead.

25

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Fine-tuning on our largest dataset mix1 + mix2 + tactic required 26 hours using 64 A100
GPUs exhibiting high FP16 usage, totalling an estimated ≈1.5K A100(FP16)-hours. This gives
an estimated cost of 17.33 A100(FP16)-hours per billion elapsed tokens during training. We note
that when calculating the number of elapsed tokens for training, we overestimate the actual number
of tokens effectively trained on by summing full context windows (in this case, 2048 tokens).

F ADDITIONAL DISCUSSION

PACT as a method for harvesting previously discarded compute There is a sense in which
PACT is merely an application of the well known principle that compute in the form of search
should be exchanged for training signal whenever possible. In Lean, typeclass inference relies on a
backtracking Prolog-style search; the elaborator performs search to disambiguate overloaded notation
and infer types; Lean tactics have complex semantics precisely because they can perform search to
find subproofs automatically. The work done by these subroutines is preserved in the proof artifacts,
and PACT can be viewed as a way of extracting this information offline for more training signal.

Chained tactic predictions In Lean, multiple tactic commands can be chained together using
semicolons. Our data pipeline treats these tactic chains as a single sequence in our training data, and
they are occasionally predicted by the model. Such chained tactic applications are difficult for human
formalizers to synthesize on their own, as they require reasoning about the semantics of multiple
tactics in sequence and their effects on the tactic state, and the examples present in the training data
are usually optimized by hand from longer, less succinct proofs. We observed that PACT significantly
boosts the capability of our models to successfully predict longer chained tactic applications. This
occurs in spite of the fact that this tactic chaining idiom is specific to the tactic proofstep dataset and
does not appear in the PACT training data whatsoever. We supply more detail in the appendix.

Impact on Lean community Lean’s mathlib is one of the most active open-source software
projects in the world, achieving explosive growth in recent years mathlib (2020). Our work has been
welcomed by members of this community, with Lean power users describing some of the new proofs
found by GPT-f as “nontrivial” and “clever”. More than one-third of the proofs found by our models
are shorter and produce smaller proof terms (sometimes by several orders of magnitude) than the
ground truth. Manually inspecting a portion of these shorter proofs has led to 36 GPT-f co-authored
commits to mathlib, some of which reduce proof term sizes and theorem compilation times by an
order of magnitude. We supply more detail in the appendix.

LEAN GPT-F INTERACTIVE FRONTEND We have released a simplified version of the proof search
described in Appendix C as a tactic called gptf to the Lean community in a public beta, opening the
way for our models to directly accelerate the development of formalized mathematics and for human
experts to provide feedback and additional training signal in a virtuous cycle.

Future directions There are many elaborations on the training data, training methodology, and
tree search wrapping lean-gptf which can be reasonably expected to improve its performance
at theorem proving. Our dataset can be synthetically augmented using similar methods as Polu &
Sutskever (2020). Merely making the decoded rewrites robust by only using the largest prefix of
successful rewrites significantly boosts the success rate of suggested rewrites. In a similar vein,
predicted lemmas generated as arguments to unsuccessful tactic applications could be cached and
re-used as hints for an intermittently-queried hammer. The increased success rate of chained tactic
predictions mentioned above shows the feasibility of having language models perform multiple
reasoning steps in a single query, potentially improving the efficiency of the proof search. From the
experiments described in Section 3, it is clear that the composition of the dataset used for co-training
significantly affects performance on theorem proving. Although we uniformly sampled across all
co-training tasks, it would be interesting to optimize a dynamic mixture schedule, perhaps annealing
towards a desired task.

26

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

G EXAMPLE PROOFS

Lean’s mathlib is one of the most active open-source software projects in the world. More than
one-third of the proofs found by our models are shorter and produce smaller proof terms than the
ground truth, leading to dozens of GPT-f co-authored commits to mathlib. We examine some of
the proofs found by our models in more detail.

LIE ALGEBRA.MORPHISM.MAP BOT IFF

This proof produces a proof term which is 4X smaller than the original:

lemma map_bot_iff : I.map f = ⊥ ↔ I ≤ f.ker :=
by { rw <- le_bot_iff, apply lie_ideal.map_le_iff_le_comap }

The original, human-written proof is much longer, viz.

lemma map_bot_iff : I.map f = ⊥ ↔ I ≤ f.ker :=
begin

rw le_ker_iff, unfold lie_ideal.map, split; intros h,
{ rwa [eq_bot_iff, lie_submodule.lie_span_le, set.image_subset_iff,
lie_submodule.bot_coe] at h,},

{ suffices : f ′′ I = ↑(⊥ : lie_ideal R L′), { rw [this,
lie_submodule.lie_span_eq], },
ext x, rw [lie_submodule.bot_coe, set.mem_singleton_iff,
set.mem_image],
split,
{ rintros 〈y, hy, hx〉, rw <- hx, exact h y hy, },
{ intros hx, use 0, simp [hx], }, },

end

PRIMREC.OF EQUIV

This proof produces a proof term which is 12X smaller than the original:

theorem of_equiv {β} {e : β ' α} :
by haveI := primcodable.of_equiv α e; exact
primrec e :=

by letI : primcodable β := primcodable.of_equiv α e; exact encode_iff.1
primrec.encode

The author of the original proof and maintainer of that package commented:

encode iff.1 primrec.encode is clever, it’s a way to translate primrec
across an equivalence when the encode function is defined as encode x =
encode (e x) where e is the isomorphism.

As far as they knew, this trick was never used before in the computability package.

REAL.TAN EQ SIN DIV COS

This proof demonstrates our model’s library knowledge and ability at premise selection.

lemma real.tan_eq_sin_div_cos (x : R) : tan x = sin x / cos x :=
begin

rw <- of_real_inj,
simp only [complex.tan_eq_sin_div_cos, of_real_sin, of_real_cos,
of_real_div, of_real_tan]

end

Our model was able to predict this entire list of simp lemmas in one shot. Note that the lemma
complex.tan_eq_sin_div_cos in this list is the complex number version of the result, i.e. ∀
(x : C), tan x = sin x / cos x. The previous human-written version of the proof did

27

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

not use the more general version of the lemma on complex numbers, demonstrating our model’s
ability to find more general cases of lemmas. We contrast this with the human-written ground truth,
which is more complex and performs a case analysis using the complex cosine:

lemma tan_eq_sin_div_cos : tan x = sin x / cos x :=
if h : complex.cos x = 0 then by simp [sin, cos, tan, ∗, complex.tan,

div_eq_mul_inv] at ∗

else
by rw [sin, cos, tan, complex.tan, <- of_real_inj, div_eq_mul_inv,
mul_re];

simp [norm_sq, (div_div_eq_div_mul _ _ _).symm, div_self h]; refl

SYM2.IS DIAG IFF PROJ EQ

The proof of this lemma is longer than the ground truth and was not contributed to mathlib, but we
describe it here because the proof is original and includes a nontrivial instantiation of an existential
quantifier.

theorem sym2.is_diag_iff_proj_eq (z : α × α) :
is_diag JzK ↔ z.1 = z.2 :=

begin
intros,
simp only [is_diag, prod.ext_iff, quot.exists_rep, iff_true,
not_true, eq_self_iff_true],
simp [diag], split,
{ rintros 〈y, hy〉, cases hy; refl },
intro h, cases z, existsi z_snd,
cases h, refl,

end

Before existsi z_snd, the goal state is

z_fst z_snd: α
h: (z_fst, z_snd).fst = (z_fst, z_snd).snd
` ∃ (y : α), (y, y) ≈ (z_fst, z_snd)

This goal state never appeared in mathlib.

NORM LE ZERO IFF

The following proof is remarkable because it uses fewer tactic steps and takes a different route to the
proof than the ground truth, uses a complex idiom simpa [...] using @..., and was predicted
in one shot.

lemma norm_le_zero_iff {α : Type u_1} [_inst_1 : normed_group α]
{g : α} : ||g|| ≤ 0 ↔ g = 0 :=

by { simpa [le_antisymm_iff, norm_nonneg] using @norm_eq_zero α _ g }
-- ground truth:
-- by { rw[<- dist_zero_right],
-- exact dist_le_zero }

The lemmas supplied between the square brackets are used to simplify the main goal. The lemma
supplied after the keyword using can further simplify the lemmas supplied between the square
brackets. The @ modifier makes all arguments explicit. The string @norm_eq_zero never appeared
in our training data but the prediction includes the correct number of correctly typed arguments, and
even replaces the second argument with a placeholder _, correctly guessing that it can be inferred
by the elaborator. Finally, this again showcases the strength of our models as premise selectors:
all three lemmas le_antisymm_iff, norm_nonneg, and norm_eq_zero were not used in the
human-supplied proof but are necessary for this proof.

Moving forward, we hope that our neural theorem provers will continue to find ways to improve
mathlib and assist in creating new proofs. More generally, we hope neural theorem proving will
one day be become a routine part of the formalization workflow.

28

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

H SOURCE CODE

Our source code will be made available at the following repositories:

Lean theorem proving environment :
https://www.github.com/jesse-michael-han/lean-tpe-public/

Tactic step data pipeline :
https://www.github.com/jasonrute/lean-proof-recording-public/

PACT data pipeline :
https://www.github.com/jesse-michael-han/lean-step-public/

29

https://www.github.com/jesse-michael-han/lean-tpe-public/
https://www.github.com/jasonrute/lean-proof-recording-public/
https://www.github.com/jesse-michael-han/lean-step-public/

	Introduction
	Proof artifact co-training
	Proof artifact co-training

	Experiments
	Theorem proving evaluation
	Effect of co-training vs pre-training
	future-mathlib evaluation

	Discussion
	Background
	Related work
	Related work

	The LeanStep machine learning environment
	Additional information: Datasets
	Human tactic proof steps

	Additional information: Experiments
	Ablation of WebMath pre-training
	Effect of model size

	Additional discussion
	Example proofs
	Source code

