1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

REFACTOR: LEARNING TO EXTRACT THEOREMS
FROM PROOFS

Jin Peng Zhou, Yuhuai Wu *
University of Toronto, Vector Institute
jinpeng.zhou@mail.utoronto.ca, ywu@cs.toronto.edu

Qiyang Li
University of California, Berkeley
gcli@berkeley.edu

Roger Grosse
University of Toronto, Vector Institute
rgrossef@cs.toronto.edu

ABSTRACT

Human mathematicians are often good at recognizing modular and reusable the-
orems that make complex mathematical results within reach. In this paper, we
propose a novel method called theoREm-from-prooF extrACTOR (REFACTOR)
for training neural networks to mimic this ability in formal mathematical theorem
proving. We show on a set of unseen proofs, REFACTOR is able to extract 19.6%
of the theorems that humans would use to write the proofs. When applying the
model to the existing Metamath library, REFACTOR extracted 16 new theorems
which are used frequently in the Metamath library, with an average usage of 733.5
times. With newly extracted theorems, we show that the existing proofs in the
MetaMath database can be refactored to shorten the proof lengths. Lastly, we
demonstrate that the prover trained on the new-theorem refactored dataset is able
to prove more test theorems.

1 INTRODUCTION

In the history of calculus, one remarkable early achievement was made by Archimedes in the 3rd
century BC, who established a proof for the area of a parabolic segment to be 4/3 that of a certain
inscribed triangle. In the proof he gave, he made use of a technique called the method of exhaustion,
a precursor to modern calculus. However, as this was a strategy rather than a theorem, applying
it to new problems required one to grasp and generalize the pattern, as only a handful of brilliant
mathematicians were able to do. It wasn’t until millennia later that calculus finally became a powerful
and broadly applicable tool, once these reasoning patterns were crystallized into modular concepts
such as limits and integrals.

A question arises — can we train a neural network to mimic human’s ability to extract modular
components that are useful? In this paper, we focus on a specific instance of the problem in the
context of theorem proving, where the goal is to train a neural network model that can discover
reusable theorems from a set of mathematical proofs. Specifically, we work under formal systems
where each mathematical proof is represented by a tree called proof tree. Moreover, one can extract
some connected component of the proof tree that constitutes a proof of a standalone theorem. Under
this framework, we can reduce the problem to training a model that solves a binary classification
problem where it determines whether each node in the proof tree belongs to the connected component
that the model tries to predict.

To this end, we propose a method called theoOREm-from-prooF extrACTOR (REFACTOR) for
mimicking human’s ability to extract theorems from proofs. Specifically, we propose to reverse the

*Equal Contribution

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

N: wph N: wps N: mpli.a N: mpli.b

N: wps N: wph N: wph N: wps z z 5 5
PROP: wffps PROP: wEfph PROP: wffph PROP: wEfps EROBIRVE Fph) {‘Wf\fis iR/OPyOP' SESEa)
N: wph N: owi N: ali.l N: ax-1 N: wps N: wch N: ax-mp
PROP: wffph PROP: wff(ps->ph) PROP: |-ph PROP: |-(ph->(ps->ph)) PROP: wffps PROP: wffch PROP: |-ps
N: ax-mp N: ali
0| S(E=r) PROP: |-(ch->ps)

(a) The proof tree of ali. (b) The proof tree of mp11i.

N: wch N: wps N: wph N: wps N: mpli.a N: mpli.b N: wps N: wch

PROP: wffch PROP: wffps PROP: wffph PROP: wffps PROP: |-ph PROP: |-(ph->ps) PROP: wffps PROP: wffch
N: wps N: wi N: ax-mp / N: ax-1
PROP: wffps PROP: wff(ch->ps) PROP: |-ps PROP: |-(ps->(ch->ps))
\N: o /
PROP: |-(ch->ps)

(c) The proof tree of mp1i with theorem al1i’s proof expanded (colored in blue).

Figure 1: In (a) and (b), we show proof tree visualizations of the theorem ali and mp1li. Each node
contains two pieces of information: N refers to the the name associated with the node, and PROP
refers to the proved proposition that is obtained by applying all theorem applications above that node.
In (c), we also show the expanded proof tree of mp1i with ali’s proof being expanded and colored
in blue, namely, the set of nodes Viqrge: that are the targets for our proposed learning task.

process of human theorem extraction to create machine learning datasets. Given a human proof 7',
we take a theorem s that is used by the proof. We then use the proof of theorem s, T, to re-write 1" as
T’ such that T” no longer contains the application of theorem s, and replace it by using the proof 7.
We call this re-writing process the expansion of proof T using s. The expanded proof 7" becomes
the input to our model, and the model’s task is to identify a connected component of 7", T, which
corresponds to the theorem s that humans would use in 7.

Our experimental result establishes the first proof of concept using neural network models to extract
theorems from proofs. Our best REFACTOR model is able to extract exactly the same theorem,
without even seeing instances of it in the training set, as human’s ground truth about 19.6% of time.
We also observe that REFACTOR’s performance improves when we increase the model size. It shows
promising results that further scaling up the model size might allow it to mimic human much better
in extracting reusable theorems than our reported results.

Interestingly, when REFACTOR’s prediction does not match the ground truth human theorems, the
prediction can also be a new theorem that is not in the existing library of proofs. We developed an
algorithm to verify whether the predicted component constituent a valid proof of a theorem, and
we found REFACTOR extracted 1907 valid, new theorems. We also apply REFACTOR to proofs
from the existing Metamath library, from which REFACTOR extracts another 16 novel theorems.
Remarkably, those 16 proofs are used very frequently in the Metamath library, with an average
usage of 733.5 times. Furthermore, with newly extracted theorems, we show that the human theorem
library can be refactored, and hence the proof length are shortened. The extracted theorem reduces
approximately 400k nodes in total. Lastly, we demonstrate that training a prover on the refactored
dataset leads to better proof success rates in proving new test theorems.

2 METHOD

2.1 SUB-COMPONENT OF A PROOF TREE AS A THEOREM

We provide some background of Metamath in Appendix One key idea is that a mathematical
proof can be represented as a proof tree. Interestingly, one can also identify some components of the
proof tree as an embedded proof for another theorem. To start with, given a node in a proof tree, one
can treat the entire subtree above that node as a proof of the node (more precisely, the proposition
contained in the node, i.e., PROP). For example, in the proof of ali in Figure|l|(a), the subtree

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

above the node ax—1 are two hypotheses wf fph and wf fps, and they constitute a proof of the
proposition | — (ph—> (ps—>ph)) contained in the node ax—1.

In addition to the entire subtree above a node, one may identify some connected component of the
tree as a valid theorem. For example, in Figure([T](c), we show that the proof of the theorem mp1i
contains an embedded proof of the theorem ali. The embedded proof is colored in blue, and there is
a one-to-one correspondence between these blue nodes and the nodes in the proof of ali shown in
Figure[T](a). One can hence refactor the proof with an invocation of the theorem a1l1i, resulting in a
much smaller tree shown in Figure|l|(b).

In general, there are certain criteria a component needs to satisfy to be identified as a valid proof of a
theorem. In Appendix we develop such an algorithm in more detail that performs the verification.
We will use that to verify the prediction given by a neural network model.

To conclude, in this section, we establish the equivalence between theorem extraction from a proof as
to the extraction of a sub-component from a proof tree. This allows us to formalize the problem as a
node-level prediction problem on graphs as we introduce next.

2.2 PROBLEM FORMULATION

The model is given a proof tree G with a set of nodes V, edges &, and node features x, which
correspond to the name N and the proposition PROP associated with each node. The task of the model
is to output a subset of nodes Viarget C V that correspond to an embedded proof of a useful theorem.
We cast the problem as a node-level binary classification problem that predicts whether each node
belongs to Viarger. Without loss of generality, we let all nodes in Viarget to have labels of 1 and the
rest 0.

We use a graph neural network parametrized by 6 to take the graph and node feature as input, and
outputs a scalar P, between 0 and 1 for each node v € V, representing the probability belonging
t0 Viarget- Our objective is a binary cross entropy loss between the node level probabilities and the
ground truth target for a graph. Because the number of nodes usually vary significantly across proofs,
instead of treating each node equally, we also normalize the loss by the number of nodes in the

grap

L(G,0) > log P(P, =1|G,0) (1)
|V| VE Viarget

| Z log P(P, = 0/G,0) (2)
'Ugv!arget

We then seek the best parameters by minimizing the loss over all proof trees:

i L(G,0). 3
argeman(,) (3)

2.3 REFACTOR: THEOREM-FROM-PROOF EXTRACTOR

With the problem formulated, we now describe how to generate training data points of proof trees
G with suitable targets V;arget defined. Even though we specialize our discussion in the context of
Metamath, the same technique can be applied to most other formal systems for creating datasets of
theorem extraction.

We think of the theorem as a function whose arguments are a set of hypotheses and the output
is a conclusion, as mentioned in Appendix [B.I] Instead of calling the theorem by its name, we
intentionally duplicate the body of its proof tree, and manually replace their nominal arguments with
the arguments we wish to pass in context. There are three key steps: 1. identifying the proof tree
associated to the theorem (e.g., ali in Figure[l](a)), substituting nominal arguments with the ones in
the proof context (e.g., substituting leaf nodes wf fph, wffps and | —ph in Flgurel (a) with nodes

'In our preliminary experiments we found the normalized loss gave better performance than treating each
node equally.

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 1: Node level and proof level accuracy of REFACTOR with various model sizes.

K, d, Number of Trainable Parameters Training Node Accuracy Training Proof Accuracy — Test Node Accuracy — Test Proof Accuracy

5, 64, 80k 89.4% 5.1% 77.4% 2.3%
5,128,222k 91.3% 9.9% 78.6% 3.0%
5,256,731k 93.7% 17.3% 80.1% 4.4%

10, 256, 1206k 97.5% 37.5% 84.3% 13.3%
10, 512, 4535k 97.9% 42.7% 85.6% 19.6%

Table 2: Theorem usage and their contribution to refactoring

Theorem Used Total Usage Average Usage Max Usage Average Number of Nodes Saved Total Number of Nodes Saved

Expanded 670 147640 77.4 60705 196.7 375126
Original 14 11736 733.5 8594 2025.8 32413
Total 684 159376 82.9 60705 211.9 407539

wffps,wffchand | -psin Figure (b) respectivel, and finally copy and replace it to where the
expanded node is located (e.g, replace al1i node in Figure[T](b) with the substituted a11i to arrive at
Figure[I] (c)). We present a more formal and detailed exposition of the algorithm in Appendix [A.T]

3 EXPERIMENTS

3.1 QI1 - HOw MANY HUMAN-DEFINED THEOREMS DOES THE MODEL EXTRACT?

We provide details on dataset preprocessing and model architectures in Appendix [C.I] and [C.2]
respectively. On the theorem extraction dataset obtained from Appendix [C.I} REFACTOR was able
to correctly classify 85.6% (Node Accuracy) of the nodes. For 19.6% (Proof Accuracy) of the proofs,
REFACTOR was able to correctly classify all of the nodes and fully recover the theorem that the
human use. We also show that our approach scales well with the model size (Table[I)). As we increase
the model by around 50x from 80k to 4M, both node and proof accuracy improve. In particular, the
proof accuracy goes up significantly from 2.3% to 19.6%. This shows promise that the accuracy can
be further improved by using a larger model with a larger dataset. Additional analysis on what makes
model perform well is provided in Appendix

3.2 Q2 - CAN REFACTOR EXTRACT NEW USEFUL THEOREMS?

In this section, we investigate whether REFACTOR can extract new useful theorems. We used the
best model (i.e., the largest model) in Table|T] for the results analyzed in this section. We explored two
ways of extracting new theorems. We first investigated the incorrect predictions of REFACTOR on
the theorem extraction dataset. When the prediction differs from the ground truth, it can correspond
to a valid proof. We also applied REFACTOR on the human proofs of nodes less than 5000 from the
library set .mm. In both cases, we used the algorithm developed in details in Appendix to verify
whether a prediction leads to a valid theorem.

We extracted in total 1923 new theorems: 1907 from the expanded dataset, 16 from set .mm. We
then computed the number of usages in set .mm for each newly extracted theorem, reported in
Table[2] The average number of usages is 83 times, showing nontrivial usefulness of these theorems.
Notably, the theorems extracted on set . mm are even more frequently used — 733.5 times on average.
We think that because the human library is highly optimized, it is harder to extract new theorems
from existing proofs. But a successful extraction is likely to be of better quality as the proof tree
input represents a true human proof rather than a synthetically expanded proof. We provide results
for model predictions where they do not constitute valid theorems in Appendix [C.4]

3.3 Q3 - CAN WE IMPROVE A THEOREM LIBRARY USING THE EXTRACTED THEOREMS?

We evaluated the reusability of the extract theorems by measuring the compression in the size of
the library that these new theorems would allow. Intuitively, when the new theorems are broadly
reusable, we would expect the proofs in the library could be shortened by using the new theorems

“Note that these three nodes in Figure(b) are parents, namely, arguments to ali node in Figure (b).

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

as part of the proofs. In this paper, we consider a specific re-writing procedure, which alternates
between 1) matching the extracted theorems against the proofs in the library and 2) replacing the
matched proportion of the proofs with the application of the new theorems.

With the 16 new extracted theorems from original dataset, the new library obtained from refactoring
was indeed smaller (See Table[2)). These new theorems on average saved 2025.8 nodes which is
an order of magnitude more than those from the expanded dataset (196.7 nodes). Nevertheless,
this shows that extracted theorems from both expanded and human datasets are frequently used in
refactoring the theorem library. In total, we were able to refactor 14092 out of 27220 theorems in the
MetaMath database. We demonstrate the usefulness of these refactored theorems in theorem proving

in Appendix [C.6]
4 CONCLUSION

In this paper, we study the problem of extracting useful theorems from mathematical proofs in the
Metamath framework. As proofs are represented as proof trees in formal systems, we formalize
theorem extraction as a node-level binary classification problem on proof trees. We propose one way
to create datasets for the problem and additionally develop an algorithm to verify the validity of the
prediction. We demonstrate that our best graph neural network model was able to extract unseen
human theorem 19.6% of the time. When the model’s prediction did not match the human theorem
ground truth, we can additionally extract 1907 theorems from the dataset. We further applied the
model on the existing Metamath library and found it was able to extract 16 new theorems, each was
used 733.5 times on average in the entire Metamath database. After theorem refactoring, those 16
new theorems saved 32413 proof nodes of the entire dataset. Finally, by training the refactored proofs,
we show a prover achieved better proof success rate on test theorems.

Our work represents the first proof-of-concept of theorem extraction using neural network models.
We see there are various ways to improve the existing model, such as scaling up the model size, or
using more powerful architectures such as transformers to autoregressively predict the target, all
of which are left to future works. Lastly, we would like to note that our methodology is not only
generic for formal mathematical theorem extraction, but also has the potential to be applied to other
applications, such as code refactoring.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 39-48, 2015.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An
environment for machine learning of higher order logic theorem proving. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 454—463. PMLR, 2019a. URL http://proceedings,
mlr.press/v97/bansall9a.htmll

Kshitij Bansal, Christian Szegedy, Markus N. Rabe, Sarah M. Loos, and Viktor Toman. Learning to
Reason in Large Theories without Imitation. arXiv preprint arXiv:1905.10501, 2019b.

Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths. Automatically composing
representation transformations as a means for generalization. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=B1ffOnRcKX.

Eyal Dechter, Jonathan Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. Bootstrap learn-
ing via modular concept discovery. In Francesca Rossi (ed.), I/JCAI 2013, Proceedings of the
23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013,
pp- 1302-1309. IJICAI/AAAIL 2013. URL http://www.aaai.org/ocs/index.php/
IJCAI/IJCAI13/paper/view/6890.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum.
Learning libraries of subroutines for neurally-guided bayesian program induction. In Samy Bengio,

http://proceedings.mlr.press/v97/bansal19a.html
http://proceedings.mlr.press/v97/bansal19a.html
https://openreview.net/forum?id=B1ffQnRcKX
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6890
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6890

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
7816-7826, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
7aa685b3bldcld6780bf36£7340078c9-Abstract.html,

Kevin Ellis, Catherine Wong, Maxwell 1. Nye, Mathias Sablé-Meyer, Luc Cary, Lucas Morales,
Luke B. Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Growing
generalizable, interpretable knowledge with wake-sleep bayesian program learning. CoRR,
abs/2006.08381, 2020. URL https://arxiv.org/abs/2006.08381.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs
with neural libraries. In ICML, 2017.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Learning
to prove with tactics. CoRR, abs/1804.00596, 2018. URL http://arxiv.org/abs/1804.
00596.

M. Gori, G. Monfardini, and F. Scarselli. A New Model for Learning in Graph Domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp.
729-734 vol. 2, 2005.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus N. Rabe, and Bernd Finkbeiner.
Transformers Generalize to the Semantics of Logics. arXiv preprint arXiv:2003.04218, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A learning environment
for theorem proving. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rl1xwKoR9Y7.

Drew A Hudson and Christopher D Manning. Compositional attention networks for machine
reasoning. In International Conference on Learning Representations (ICLR), 2018.

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas. J.
Symb. Comput., 69:109-128, 2015. doi: 10.1016/j.jsc.2014.09.032. URL https://doi.org/
10.1016/73.79sc.2014.09.032.

Cezary Kaliszyk, Josef Urban, and Jiri Vyskocil. Lemmatization for stronger reasoning in large
theories. In Carsten Lutz and Silvio Ranise (eds.), Frontiers of Combining Systems - 10th In-
ternational Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings,
volume 9322 of Lecture Notes in Computer Science, pp. 341-356. Springer, 2015. doi: 10.1007/
978-3-319-24246-0\ 21. URL https://doi.org/10.1007/978-3-319-24246—-0_
21

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Guillaume Lample and Francois Charton. Deep learning for symbolic mathematics. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
Ske31kBtPrl

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Pzj6fzUbwk .

https://proceedings.neurips.cc/paper/2018/hash/7aa685b3b1dc1d6780bf36f7340078c9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7aa685b3b1dc1d6780bf36f7340078c9-Abstract.html
https://arxiv.org/abs/2006.08381
http://arxiv.org/abs/1804.00596
http://arxiv.org/abs/1804.00596
https://openreview.net/forum?id=r1xwKoR9Y7
https://openreview.net/forum?id=r1xwKoR9Y7
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-3-319-24246-0_21
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Ske31kBtPr
https://openreview.net/forum?id=Ske31kBtPr
https://openreview.net/forum?id=Pzj6fzU6wkj

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In
International Conference on Learning Representations, 2019. URL https://openreview,
net/forum?id=rJgMlhRctm.

Bartosz Piotrowski and Josef Urban. Guiding Inferences in Connection Tableau by Recurrent Neural
Networks. In Christoph Benzmiiller and Bruce Miller (eds.), Intelligent Computer Mathematics,
pp. 309-314, Cham, 2020. Springer International Publishing. ISBN 978-3-030-53518-6.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.orqg/abs/2009.03393.

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
self-supervised skip-tree training. arXiv preprint arXiv:2006.04757, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Trans. Neural Networks, 20(1):61-80, 2009. doi:
10.1109/TNN.2008.2005605. https://doi.org/10.1109/TNN.2008.2005605.

Josef Urban and Jan Jakubtv. First Neural Conjecturing Datasets and Experiments. In Christoph
Benzmiiller and Bruce Miller (eds.), Intelligent Computer Mathematics, pp. 315-323, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-53518-6.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural ma-
chine translation in autoformalization of mathematics in mizar. Proceedings of ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2020.

Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-order logic, 2016.

Yuhuai Wu, Honghua Dong, Roger B. Grosse, and Jimmy Ba. The scattering compositional learner:
Discovering objects, attributes, relationships in analogical reasoning. CoRR, abs/2007.04212, 2020.
URLhttps://arxiv.org/abs/2007.04212.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Grosse. INT: An Inequality Benchmark for Evaluating
Generalization in Theorem Proving. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=06LPudowNQm.

Kaiyu Yang and Jia Deng. Learning to Prove Theorems via Interacting with Proof Assistants. In
Proceedings of International Conference on Machine Learning (ICML), 2019.

https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://arxiv.org/abs/2009.03393
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/2007.04212
https://openreview.net/forum?id=O6LPudowNQm

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

A FURTHER EXPLANATIONS OF THE ALGORITHMS

A.1 THEOREM EXPANSION

We discuss our theorem expansion algorithm in this section. It is worth noting that the existing proofs
from the Metamath library cannot be directly used because it does not contain meaningful targets.
However, the human proofs can instead give us hints as to how to construct such data points. To
illustrate, in Figure [T] (b), the proof of mp11i invokes a theorem application with ali, which is a
theorem that human considered useful and stored in the library. Our idea is to reverse the process of
theorem extraction, by expanding the proof of ali in the proof of mp1li to obtain a synthetic proof
shown in[I] (c). In this expanded proof of mp1i, one can see the proof of ali is embedded as a
component colored in blue, hence creating a suitable target for theorem extraction.

An overview of the algorithm can be found in Algorithm[I] The algorithm takes input of two proof
trees where the first proof tree uses the theorem that the second proof tree shows as one of the steps.

We explain our algorithm with the example from Figure[I] Specifically, proof tree T" corresponds to
Figure[I](b) and proof tree T’ corresponds to Figure[T](a). The theorem we want to expand is ali and
we first obtain all its arguments using Get Argument s function. We treat each theorem as a function
and its arguments are the hypothesis of the theorem used to compute the conclusion. Consequently,
the nominal arguments are wph, wps and ali. 1. Next, we obtain contextual arguments, which are
those specific hypotheses used in the context of the proof. Each hypothesis are represented by the
entire subtree above each parent of c. Concretely, the contextual arguments of the a1i node in (b)
are wps, wch and [wph, wps, mpli.a, mpli.b, ax—mp]. Here, we use square bracket to enclose
a subtree that has more than one node, which is treated holistically as the third contextual argument.
Note that we can clearly see a one-to-one correspondence between the nominal arguments and
the contextual arguments: (wph—wps, wps—wch and ali.l—[wph, wps, mpli.a, mpli.Db,
ax-mp]). We then simply replace all nodes in the proof tree of ali using this mapping. This gives
us [wps, wch, wps, wi, wph, wps, mpli.a, mpli.b, ax—mp, wps, wch, ax—1, ax-mp]. We
generate its proof tree representation with GetProof function. Finally we replace the subtree above
ali with the new proof tree which in this case happens to be the entire proof of mp11i and this leads
to the final expanded proof in Figure[T](c).

Lastly, note that there are many options for theorem expansion. Firstly, one single proof can contain
multiple theorems, and each theorem can be expanded either simultaneously or one by one. In
addition, one can even recursively expand theorems by expanding the theorem inside of an expanded
proof. For simplicity, in this work, we only expand one theorem at a time, and for every theorem
in a proof. Hence, for a proof that contains M total number of theorem applications, we create M
data points for learning theorem extraction. We leave investigations of more sophisticated expansion
schemes to future work.

Algorithm 1 Theorem Expansion Algorithm Pseudocode

1: procedure EXPANSION

2: Input: proof tree T that uses theorem s at node c.

3 Input: proof tree of theorem s: T5.

4: nominal Arguments = GetArguments(7’)

5: contextual Arguments = [GetSubtree(p) for p in GetParents(c)]

6: allNodeNames = GetAlINodeNames(7)

7 f : nominal Arguments — contextual Arguments.

8: f(i*" element of nominal Arguments) = *" element of contextual Arguments
9: for each name N € allNodeNames do

10: if N € nominalArguments then

11: replace N with f(IN)

12: replacedProof = GetProof(allNodeNames)

13: replace entire subtree above node ¢ with replacedProof
14: return T’

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

8 : wps N: wch 8 N: wps N: wch
PROP: wffph PROP: wffps PROP: wffch PROP: wffph PROP: wffps PROP: wffch
: wph N: N: wch N: w3a N: wth N: pm3.2an3 N: 3exp.l
PROP: wffph PROP: wffps | PROP: wffch | PROP: wff (ph/ps/ch) |PROP: wffth PROP: |- (ph->(ps->(ch->(ph/ps/ch)))) | PROP: |-((ph/ps/ch)->th)
N: wph N: wps N: wch N: wth N: syls
PROP: wffph PROP: wffps PROP: wffch PROP: wffth |PROP: |=(ph=>(ps=>(ch=>th)))

N: imp3l
PROP: |- (((ph/ps)/ch)=->th)

Figure 2: A proof tree prediction where nodes with output probability greater than 0.5 have been
colored blue. This proof tree does not satisfy the constraint to be a valid theorem because only one of
the parent nodes of the root are predicted to be in Vi get-

N: wps N: wph
PROP: wifps PROP: wefph

N: g N: wa : wph N: wps N: bianfi.l
PROP: wifph PROP: wEE(ps/ph) PROP: wefph PROP: wffps PROP: |--.ph

N: wn N: bianfi.l N: intnan

e e N GRS (GED GRS prosiferil(peron)) EEoRre) (eoeiliSineron)
~.
: wph N wa N: 2th N: wph N: wa N: 2th
PROP: wifph PROP: WEf(ps/ph) BROP: |- (-.ph<->-. (ps/ph)) PROP: wffph PROP: wEf(ps/ph) PROP: |- (-.ph<->-.(ps/ph))
N: comtbi
PROP: |-(ph<->(ps/ph)})
(a) A prediction made by REFACTOR with Viqrget in .
blue. (b) Viarget extracted from (a).
PROF: wEfph N wph g
- PROP: wffph PROP: wffps
N: wn N: wn N: hyp.1 N: hyp.2
PROP: wff-.ph PROP: wff-.(ps/ph) PROP: |--.ph PROP: |--.(ps/ph) N: wn N: wn N: hyp.1 N: hyp.2
\ PROP: wff-.ph PROP: wff-.ps PROP: |--.ph PROP: |--.ps
];;O.?[:mwllph l;l;o;g:)f’wllpu l!:!r:‘\Olz’th\>(-.ph<->-.Lpu/‘xlﬂ) S P \“‘hh\‘ / ‘/
PROP: wffph PROP: wffps PROP: |-(-.ph<->-.ps)
‘:}:(O;(:;:“\;ka;h<fi»(ps/ph]7 N b
: condbil
PROP: |- (ph<->ps)
() Viarget extracted as in (b) with leaf node name and
proposition replaced. (d) A valid proof tree extracted and verified.

Figure 3: Visualization of theorem verification algorithm.

A.2 THEOREM VERIFICATION

In this section, we present our algorithm to determine whether a predicted component made by
REFACTOR constitutes a valid theorem. On a high level, our algorithm checks two necessary
conditions and performs standardization before feeding the node names of extracted component to a
verifier which we describe next.

We describe how we can verify Metamath proofs represented by a conclusion and a list of node names
such as the ones seen in the previous section. This can be easily achieved by calling GetProof
from Algorithm |I| on the list of nodes names which follow a Reverse Polish Notation (RPN), and
the function call returns a proof tree labelled with propositions (i.e., PROP) . We then compare
between the proposition given in the bottom node (conclusion) to the given conclusion specified by
the theorem. The proof is verified if and only if the two conclusions are the same. We refer to this
simple procedure as Metamath verifier.

For the theorem verification algorithm, We first take all node prediction with value greater than 0.5 as
the set of extraction nodes, which we represent as f/m,,get (see Figure (a) and (b)). We first check if
\}tm.get forms a connected component i.e. a tree structure, as disjoint set of nodes cannot be a valid
new theorem. Secondly, one necessary constraint for a valid extracted theorem is that for each node
in Vtmget, either none or all of its parent nodes need to be present in Vtmget. If only some but not
all parents are present, this corresponds to a step of theorem application with an incorrect number
of arguments. We illustrate one example that violates this constraint in Figure 2] As seen in this
example, only one parent of the root node is in f}m,.get and similarly one parent node of sy18 is not
in f)target. Because of these missing arguments, this will not be a valid new theorem. We note that
although the extraction algorithm can be implemented in a way such that it auto-completes” the

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

arguments by adding additional necessary nodes into the set of extracted nodes, we choose not to do
so in order to make sure the submodule is entirely identified by REFACTOR.

Once the extracted nodes pass these checks, we perform a so-called standardization. Here we once
again leverage functions defined in Algorithm[I]} Specifically, we replace all node names of leaf nodes
with a pre-defined set of node names allowed in Metamath such as wph, wps. This can be achieved
by first obtaining arguments of the extracted component via Get Argument s and replacing these
arguments in a fashion similar to Algorithm[I]except this time the nominal arguments are from the
extracted component and contextual arguments will be the pre-defined arguments from Metamath
convention. As seen in Figure[3|(c), we replace all leaf node names wa with wps.

After standardization, we simply feed all the node names of the extracted component into the verifier
we have described to determine whether it is a valid theorem. For example, node names in (¢) [wph,
wps, wph, wn, wps, wn, hyp.1, hyp.2, 2th, con4bii] are fed into the verifier and we arrive at

Figure[3|(d).

N: wps N: wch N: wch N: wth N: wps N: imimi2i.2
PROP: wffps PROP: wffch PROP: wffch PROP: wffth PROP: wffps PROP: |-(ch->th)

N /S N

N: wps N: wch N: wph N: wps N: wi N: wth N: imiml2i.1 B
PROP: wffps PROP: wffch PROP: wEfph _ PROP: wffps PROP: wff(ps->ch) PROP: wffth PROP: |-(ph->ps) PROP: |-((ps->ch)->(ps->th))

N: wph N: owi N: wth N: sylScom
PROP: wffph _ PROP: wff (ps->ch) PROP: wffth PROP: |- (ph=>((ps->ch)->th))

N: coml2

PROP: |-((ps->ch)->(ph->th))

Figure 4: An example prediction that fails to be extracted as a new theorem due to no valid substitution
plan in standardization. Specifically, the blue node wi cannot be substituted to a basic argument
allowed in Metamath while still keeping the proof tree valid.

Intuitively, this standardization process can be thought of as an reverse process of the steps performed
in proof expansion algorithm. Instead of replacing simple and basic nominal arguments with complex
contextual ones, we use pre-defined simple contextual arguments from Metamath to replace the
complex nodes in the extracted proof tree. We note that verifying a proof after standardization is
not always possible. Consider an example in Figure[d] where the two parent nodes of blue node wi
are not included in f?tm.get but in fact included in V4,4 Because of this, we need to replace wi
with a basic argument in Metamath such as wt a. However, with this replacement, the arguments of
sy15com will no longer be valid because it needs an expression with two wf £ variables in the node
we substituted. Therefore, there will be no valid substitution and this proof tree prediction cannot
be extracted as a new theorem. We discard the extracted components that cannot be verified after
standardization and only consider the ones that can be verified as new theorems.

B BACKGROUND

B.1 METAMATH AND PROOF REPRESENTATION

In this section, we describe how one represents proof in the Metamath theorem proving environ-
ment. We would like to first note that even though the discussion here specializes in the Metamath
environment, most of the other formal systems (Isabelle/HOL, HOL Light, Coq, Lean) have very
similar representations. The fundamental idea is to think of a theorem as a function, and the proof
tree essentially represents an abstract syntax tree of a series of function applications that lead to the
intended conclusion.

Proof of a theorem in the Metamath environment is represented as a tree. For example, the proof of
the theorem al1i is shown in Figure|l|(a). Each node of the tree is associated with a name (labeled as
N), which can refer to a premise of the theorem, an axiom, or a proved theorem from the existing
theorem database. Given such a tree, one can then traversing the tree from the top to bottom, and
iteratively prove a true proposition (labeled as PROP) for each node by making a step of theorem
application. The top-level nodes usually represent the premises of the theorem, and the resulting
proposition in the bottom node matches the conclusion of the theorem. In such a way, the theorem is
proved.

10

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

: 10°

. | e mean
g 103, % . c
o |||| median 0 107
8 102 i i 8
= £ 101
H# 1014 : i |||||| Wl W 1 1 "

L JIHin 100]
0 20 40 60 80 2 4 6 8 10
Occurrence # Occurrence
(a) Entire dataset statistics (b) Test dataset statistics

Figure 5: Number of theorems vs number of occurrences of our dataset. Both (a) and (b) show
noticeable occurrence imbalance with (b) being less due to our further subsampling of a maximum
10 occurrence.

We now define one step of theorem application. When a node is connected by a set of parent nodes,
it represents a step of theorem application. In particular, one can think of a theorem as a function
that maps a set of hypothesis to a conclusion. Indeed, a node in the tree exactly represents such
function mapping, that is to map the set of propositions of the parent nodes, to a new conclusion
specified by the theorem. Formally, given a node ¢ whose associated name refers to a theorem 7', we
denote its parent nodes as P.. We can then prove a new proposition by applying the theorem 7', to all
propositions proved by nodes in P,.

The proof of the theorem al1i in Figure[T](a) consists of 3 theorem applications. The top-level nodes
are the hypotheses of the theorem. Most of the hypotheses state some expression is a well-formed
formula so that the expression can be used to form a syntactically correct sentence. The more
interesting hypothesis is ali. 1, that states | —ph, meaning ph is assumed to be true. In the bottom
node, the theorem invokes the theorem ax-mp, that takes in four propositions as hypotheses, and
return the conclusion | - (ps—>ph) . In plain language, the theorem is a proof of the fact that if ph
is true, then (ps—>ph) is also true.

B.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNN) is a powerful class of architectures that is effective for representation
learning over data with known graph structures (Gori et al., 2005; Scarselli et al., | 2009). The input of
a GNN is typically an augmented graph G = (V, E') where each node v € V is augmented with a

)

feature vector hq()o . The GNN then maps these feature vectors {h, },cv to a set of embedding vectors

{ hqu) }vev through iterative applications of a neighbourhood aggregation function. In particular,

PP = A(RED, ST D W), “
u€eN (v)

where N (v) = {ulu € V A (v,u) € E}, {W®)} are weights of the GNN. The resulting node
embedding vectors {hg,K)} is able to incorporate the information of all its k-hop neighbours.

C SUPPLEMENTARY EXPERIMENT RESULTS

C.1 DATASET AND PRE-PROCESSING

We applied REFACTOR to create datasets from the main and largest library of Metamath, set . mm.

In order to fairly compare prover performance reported from|Whalen| (2016), we used their version of
set .mm, which contains 27220 theorems. We also filtered out all expanded proofs with more than
1000 nodes or contain nodes features of character length longer than 512. This gave rise to 257264
data points for training theorem extraction before theorem maximum occurrence capping, which we
describe next.

11

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 3: Node level and proof level accuracy of REFACTOR with different input configurations. No
edge: all the edges in the graph are removed; Leaves—Root: only keep the edges are in the same
direction of the paths that go from leaves to their parents; Leaves<—Root: same as Leaves—Root
except all the edges are all reversed; Leaves«+Root: the original graph with bidirectional edges.
Node Features: whether or not the node features are fed as input to the model. All the experiments
are run with K = 10 and d = 256.

Training Node Accuracy — Training Proof Accuracy — Test Node Accuracy — Test Proof Accuracy

No edge + Node Features 86.8% 0.1% 74.9% 0.1%
Leaves—Root + Node Features 87.1% 0.5% 75.2% 0.1%
Leaves<«Root + Node Features 96.6% 6.0% 88.1% 3.5%

Leaves<+Root 86.3% 0% 74.2% 0%
Leaves«>Root + Node Features (REFACTOR) 97.5% 37.5% 84.3% 13.3%

We noted that the distribution of theorem usage in set .mm is highly imbalanced. To prevent the
model from learning to only extract a few numbers of common theorems due to their pervasiveness,
we employed a subsampling of the data with respect to theorem occurrence to balance the dataset.
Specifically, in the training set, for those theorems that occur more than 100 times as extraction
targets, we subsampled 100 data points per theorem. In Figure[5](a), we plot a histogram of theorem
occurrence versus the number of theorems. As seen in the figure, the distribution roughly follows a
power-law distribution with 4000 theorems only used once in set . mm, and a substantial number of
theorems that occur beyond 100 times. For the validation and test set, as we wanted to evaluate the
model on a diverse set of extraction targets, we capped the maximum number of occurrences as 10
using subsampling. The occurrence histogram of the test dataset is shown in Figure[5](b) and the total
number of expanded proofs in our dataset after capping theorem maximum occurrence is 124294.

To evaluate the model’s generalization ability, we performed a target-wise split on the dataset. That
is, we split the dataset in a way that the prediction targets, namely, the theorems to be extracted,
are different for the train, valid and test set. By doing so, we discouraged simple memorization of
common theorems and extracting them from unseen proofs.

C.2 MODEL ARCHITECTURE AND TRAINING PROTOCOL

In this section, we describe our neural network architecture parameters and other training details. We
used a character-level tokenization for the node feature, which is a concatenation of texts in the fields
N and PROP (see Figure[I]). For each node, we first embedded all the characters with an embedding
matrix, followed by two fully connected layers. We then averaged over all embeddings to obtain a
vector representation of a node. We used these vector representations as the initial node embeddings
to a graph neural network. We used K GraphSage convolution [Hamilton et al.|(2017) layers with
size d and two more fully connected layers with sigmoid activation at the end to output the scalar
probability. The size of the character embedding was set to 128 and the number of hidden neurons in
all the fully connected layers was set to 64. Both K and d are hyperparameters.

For all of our model training, we used a learning rate of /e-4 with Adam optimizer Kingma & Ba
(2015). All methods were implemented in Pytorc and Pytorch Geometric library El We ran all
experiments on one NVIDIA Quadro RTX 6000, with 4-core CPUs.

C.3 QI - How MANY HUMAN-DEFINED THEOREMS DOES THE MODEL EXTRACT?

To understand what mechanism in the GNN made the theorem extraction possible, we re-trained the
model, but with different configurations compared to the original training procedure. In particular, we
examined the case where all the edges are removed (No edge) as well as two types of uni-directional
connections: 1) only edges that go from leaves to root are included (Leaves—Root) and 2) only edges
that go from root to leaves are included (Leaves<—Root). In addition, we were curious to see whether
the graph structure alone is sufficient for theorem prediction when no node features are provided.

For all the experiments, we used a model with K = 10 and d = 256. We summarize the results of
these data configurations in Table [3]and report node level and proof level accuracy on training and

3https://pytorch.org/
*https://pytorch-geometric.readthedocs.io/en/latest/

12

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

GEJ 102 = =:=: mean 600 ‘[Refactored

o) : median 5001 L- Not Refactored

9, “hl : + I
o C 4 1

|E 101 | I:.“I.II " 8 :gg_ |w._|

: : Shedim |)

g 2001

100 1IN 0.

101! 102 103 10° 10! 102 103 104 10°
Nodes of New Theorem # Nodes of Theorem

(a) (b)

Figure 6: (a) Distribution of number of nodes in new theorems extracted. The model mostly extracts
short theorems but is also capable of extracting theorems that have hundreds of nodes. (b) Distribution
of number of nodes of refactorable and not refactorable proofs. Refactorable proofs are generally
longer than those that are not.

Table 4: An analysis of incorrect predictions on the theorem extraction dataset. We observe there are
still substantial amount of predictions that lead to valid theorems.

Dataset Total Not Tree & Invalid Tree & Invalid Tree & Valid

Training 64349 13368 47521 3460
Validation 4766 1175 3238 353
Test 4822 1206 3348 328
set.mm 22017 8182 13470 365

test set. It can be seen that both edge connection and input node feature information is crucial in this
task as both (No edge + Node Features) and (Leaves<»Root) achieved minimum proof level accuracy.
Interestingly, the direction of edge led to a drastically different performance. Leaves—Root + Node
Features performs poorly in proof level accuracy whereas Leaves<—Root + Node Features achieved
comparable performance with bidirectional edges (Leaves<+Root + Node Features).

This phenomenon can be explained by recognizing the fact that there are many identical hypothesis
nodes in a proof due to MetaMath’s low-level nature. For example, there are three identical leaf
nodes wps in Figure[T](c). If the edges only point from hypothesis to conclusion, the message for
two identical hypothesis leaves will always be the same due to no incoming messages. Hence, it
is theoretically impossible to make correct predictions on the proof level. On the other hand, the
opposite direction of edges does not suffer from this limitation as there is only one root in the proof
tree. Empirically, this configuration is able to achieve decent performance, but still far behind the
performance of the model with bi-directional edges.

C.4 Q2 -CAN REFACTOR EXTRACT NEW USEFUL THEOREMS?

The number of valid theorems from the incorrect predictions on the theorem extraction dataset, and
the predictions on set .mm are listed under Tree & Valid in Table [d] We observe that there were
a non-trivial amount of predictions that led to valid theorems. Remarkably, we see REFACTOR
was able to extract valid theorems in the real human proofs (set . mm), despite the fact that human
proof distribution may be very different from the training distribution. Adding up all extracted
theorems from both approaches, we arrived at 4204 new theorems. We notice that among them,
some new theorems were duplicates of each other due to standardization and we kept one copy of
each by removing all other duplicates. We also removed 302 theorems extracted on set . mm that
corresponded to the entire proof tree. In the end, we were left with 1923 unique new theorems with
1907 and 16 from the expanded and original dataset respectively. We showed examples of extracted
new theorems in the Appendix [C.5] We also plot the distribution of number of proof nodes of the
extracted theorems in Figure [6](a). We can see the newly extracted theorems are of various sizes,
spanning almost two orders of magnitudes.

13

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 5: Proof success rate comparison.

Setting I min 5 min
Holophrasm |Whalen|(2016) - 14.3%
Holophrasm (ours) 11.5% 15.1%
REFACTOR 13.1% 15.5%

We additionally performed a more detailed analysis on the predictions, by classifying them into
three categories. The first category is denoted by Non-Tree & Invalid where the prediction is a
disconnected set of nodes and hence it is impossible to form a new theorem. In the second category
Tree & Invalid, the prediction is a connected component and hence forming a sub-tree, but it still does
not satisfy other conditions outlined in our algorithm description to be a valid proof of a theorem.
The last category Tree & Valid corresponds to a prediction that leads to an extraction of new theorem
previously not defined by humans. We present the number of predictions for each category in Table
Surprisingly, we noticed the model predicted a substantial amount of disconnected components.
We hypothesize this may be because our current model makes independent node-level predictions.
We believe an autoregressive model has a great potential to improve on this problem, and we leave it
to future work.

C.5 EXTRACTED THEOREMS

In Figure[7] we show the top 10 most frequently used new theorems in refactoring. Among them,
two are extracted from the original set . mm and the rest are extracted from the expanded dataset.
It is worth noting that although these theorems generally have fewer than 10 nodes each, they in
total contribute to more than 78% of total number of nodes saved in refactoring, suggesting the
pervasiveness and reusability of these extracted theorems in set . mm.

C.6 Q3 - ARE NEWLY EXTRACTED THEOREMS USEFUL FOR THEOREM PROVING?

We further demonstrated the usefulness of our new theorems with an off-the-shelf neural network
theorem prover, Holophrasm Whalen| (2016). We trained two Holophrasm provers, one with the
original dataset, and the other with the dataset augmented with the refactored proofs.

We evaluated the proof success rate in Table[5] We used the default values for all hyperparameters
of the prover, and we evaluated proof success rates on a hold-out suit of test theorems. We report
the results with the time limit of each proof search set to 1 and 5 minutes. Compared to the reported
result in 'Whalen| (2016) under a 5-minute limit, our re-implementation was able able to obtain a
slightly higher success rate (15.1%). It can be seen that by training on the refactored dataset, the
prover’s proof success rate improved under both 1 and 5 min limits, demonstrating the usefulness of
REFACTOR in theorem proving.

D RELATED WORK

Lemma Extraction Our work is mostly related to the work of |[Kaliszyk & Urban|(2015)); Kaliszyk
et al.[(2015). The authors propose to do lemma extraction on the synthetic proofs generated by
Automated Theorem Provers (ATP) on the HOL Light and Flyspeck libraries. They showed the
lemma extracted from the synthetic proofs further improves the ATP performances for premise
selection. However, their proposed lemma selection methods require human-defined metrics and
feature engineering, whereas we propose a novel way to create datasets for training a neural network
model to do lemma/theorem selection. Unfortunately, as the Metamath theorem prover is not equipped
with ATP automation to generate synthetic proofs, we could not easily compare our method to these
past works. We leave more thorough comparisons on the other formal systems to future work.

Discovering Reusable Structures Our work also is related to a broad question of discovering
reusable structures and sub-routine learning. One line of the work that is notable to mention is
the EC-style learning algorithms |[Dechter et al.| (2013); [Ellis et al.| (2018}, |2020). These works
focus on program synthesis while trying to discover a library of subroutines. As a subroutine in

14

1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

ig_ek &g & N: cA N: cB
EROECNCIsCEy \GROEGHCISESE PROP: classA PROP: classB

N: wph N: weeq N: wph N: hyp.1
PROP: wffph PROP: WIfA-B ROP: wifAe.B PROP: wffph DPROP: |-Re.B
8 & N: ali
PROP: wEE (ph/A<EB) PROP: |- (ph->Ae.B)

(a) Used 60705 times, from (b) Used 11375 times, from ex-
expanded dataset panded dataset

(c) Used 11125 times, from expanded dataset

N: wph
PROP: wffph N: wch N: wth
PROP: wffch PROP: wffth

N: wn N: wps \\\ 5//
N: w

PROP: wff-.ph PROP: wffps N: wph N: wps : wa : hyp.1l
\\\ ‘// PROP: wffph PROP: wffps PROP: wff(ch/th) PROP: |- (ph->ps)
N: wa \\
PROP: wff (-.ph/ps) N: adantr
PROP: |- ((ph/(ch/th))=->ps)

(d) Used 8594 times, from (e) Used 7241 times, from expanded dataset

set .mm
N: wch N: wth
PROP: wffch PROP: wffth
: N: wps N: wb : hyp.1 B .
PROP: wffph PROP: wffps PROP: wff(ch<->th) PROP: |-(ph->ps) PROP: |- (ps->(ch<->th))
5 o
PROP: |- (ph->(ch<->th)
(f) Used 4693 times, from expanded dataset
N: wth N: wta
PROP: wffth PROP: wffta
: : N: wch : Wb : . N: hyp.2 : o
PROP: wffph PROP: wffps PROP: wffch PROP: wff (th<->ta) PROP: |- (ph->ps) PROP: |- (ph->ch) PROP: |-((ps/ch)->(th<->ta))
N: syl2anc
PROP: |-(ph->(th<->ta))
(g) Used 4437 times, from expanded dataset
N: cA N: cB N: cC
PROP: classA PROP: classB PROP: classC
N: wph N: wbr N: wps N: hyp.1l N: hyp.2
PROP: wffph PROP: wffACB PROP: wffps PROP: |-(ph->ACB) PROP: |- (ph->(ACB<->ps))
N: mpbid
PROP: |- (ph->ps)
(h) Used 3428 times, from expanded dataset
N: wph N: wth N: wps N: hyp.l N: hyp.2 N: cA N: cr N: cB :
PROP: wffph PROP: wffth PROP: wffps PROP: |-(ph->th) PROP: |-(th->ps) PROP: classA PROP: classRR PROP: classB PROP: classRR
N: wph N: wps N: wch N: syl N: wcel : weel N: wph
PROP: wffph PROP: wffps PROP: wffch PROP: |- (ph->ps) PROP: wffAe.RR PROP: wffBe.RR PROP: wffph
N: adantr N: w3a
PROP: |- ((ph/ch)->ps) PROP: wff (Ae.RR/Be.RR/ph)
(i) Used 3376 times, from expanded dataset (§) Used 2933 times, from set .mm

Figure 7: Top 10 most frequently used theorems in refactoring.

programming serves a very similar role as a theorem for theorem proving, their work is of great
relevance to us. However they approach the problem from a different angle: they formalize sub-
routine learning as a compression problem, by finding the best subroutine that compresses the
explored solution space. However, these works have not yet been shown to be scalable to realistic
program synthesis tasks or theorem proving. We, on the other hand, make use of human data to
create suitable targets for subroutine learning and demonstrate the results on realistic formal theorem
proving. Another related line of work build inductive biases to induce modular neural networks that

can act as subrountines |Andreas et al.| (2015));|(Gaunt et al.[{(2017); Hudson & Manning| (2018); Mao

15 |

15t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

et al| (2019); /Chang et al.| (2019); [Wu et al.| (2020). These works usually require domain knowledge

of sub-routines for building neural architectures hence not suitable for our application.

Machine Learning for Theorem Proving Interactive theorem provers have recently received

enormous attention from the machine learning community as a

deep learning methods (Bansal et al.|, 20194:b}; (Gauthier et al.

testbed for theorem proving using

2018} [Huang et al., 2019} [Yang &

[Deng] [2019; [Wu et all, 2021} [Li et al., 2021} Polu & Sutskever, |2

020). Previous works demonstrated

that transformers can be used to solve symbolic mathematics problems (Lample & Charton| [2020),
capture the underlying semantics of logical problems relevant to verification (Hahn et al.| |2020)), and

also generate mathematical conjectures (Urban & Jakubuv, [2020). [Rabe et al.|(2020) showed that

self-supervised training alone can give rise to mathematical reaso

ning. [Li et al.| (2021) used language

models to synthesize high-level intermediate propositions from a local context. Piotrowski & Urban|
(2020) used RNNss to solve first-order logic in ATPs. [Wang et al.| (2020) used machine translation to

convert synthetically generated natural language descriptions of

16

proofs into formalized proofs.

	Introduction
	Method
	Sub-component of a Proof Tree as a Theorem
	Problem Formulation
	REFACTOR: Theorem-from-Proof Extractor

	Experiments
	Q1 - How many human-defined theorems does the model extract?
	Q2 - Can REFACTOR extract new useful theorems?
	Q3 - Can we improve a theorem library using the extracted theorems?

	Conclusion
	Further explanations of the algorithms
	Theorem Expansion
	Theorem Verification

	Background
	Metamath and Proof Representation
	Graph Neural Networks

	Supplementary Experiment Results
	Dataset and Pre-processing
	Model Architecture and Training Protocol
	Q1 - How many human-defined theorems does the model extract?
	Q2 - Can REFACTOR extract new useful theorems?
	Extracted theorems
	Q3 - Are newly extracted theorems useful for theorem proving?

	Related Work

