
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

LIME: LEARNING INDUCTIVE BIAS FOR PRIMITIVES
OF MATHEMATICAL REASONING

Yuhuai Wu1, Markus Rabe2, Wenda Li3, Jimmy Ba1, Roger Grosse1, and Christian Szegedy2

1University of Toronto, Vector Institute
2Google

3University of Cambridge
{ywu,jba,rgrosse}@cs.toronto.edu, {mrabe, szegedy}@google.com,

wl302@cam.ac.uk

ABSTRACT

While designing inductive bias in neural architectures has been widely studied, we
hypothesize that transformer networks are flexible enough to learn inductive bias
from suitable generic tasks. Here, we replace architecture engineering by encoding
inductive bias in the form of datasets. Inspired by Peirce’s view that deduction,
induction, and abduction are the primitives of reasoning, we design three synthetic
tasks that are intended to require the model to have these three abilities. We specifi-
cally design these tasks to be synthetic and devoid of mathematical knowledge to
ensure that only the fundamental reasoning biases can be learned from these tasks.
This defines a new pre-training methodology called “LIME” (Learning Inductive
bias for Mathematical rEasoning). Models trained with LIME significantly out-
perform vanilla transformers on four very different large mathematical reasoning
benchmarks. Unlike dominating the computation cost as traditional pre-training
approaches, LIME requires only a small fraction of the computation cost of the
typical downstream task.

1 INTRODUCTION

Inductive bias is essential for successful neural network learning. Many of the breakthroughs in
machine learning are accompanied by new neural architectures with better inductive biases, such
as locality bias in convolutional neural networks (LeCun et al., 1999), recurrence and memory in
LSTMs (Hochreiter and Schmidhuber, 1997), and structural bias in graph neural networks (Scarselli
et al., 2008). However, explicitly encoding inductive biases as new neural architectures can be difficult
for abstract concepts such as mathematical reasoning. Attempts to design elaborate architectures for
reasoning often fall short of the performance of the more generic transformer architecture. In this
work, we aim to avoid the search for new architectures and investigate whether one can learn useful
inductive bias for mathematical reasoning through pretraining.

Large-scale unsupervised pretraining of language models revolutionized the field of natural language
processing (NLP), improving the state-of-the-art in question answering, name entity recognition, text
classification, and other domains, e.g. (Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019; Liu
et al., 2019; Raffel et al., 2020; Brown et al., 2020). As a result, pretraining has become a common
practice for modern neural network based NLP. A popular explanation for the benefit of pretraining
is that the model can learn world knowledge by memorizing the contents of the natural language
corpus, which can be useful in downstream tasks, such as question answering and text classification.
However, there is another potential advantage of pretraining—it may distill inductive biases into the
model that are helpful for training on downstream tasks (Brown et al., 2020; Warstadt and Bowman,
2020). We focus on the latter and design pretraining tasks that are intentionally devoid of world
knowledge and only allow the model to learn inductive bias for reasoning.

Inspired by the logician Charles Peirce (Peirce, 1992), we consider the following three reasoning
primitives:

1

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

1. Deduction: the ability to deduce new truths from given facts and inference rules.
2. Induction: the ability to induce general inference rules from a set of known facts.
3. Abduction: the ability to explain the relationship between the evidences and inference rules.

To endow the models with an inductive bias for mathematical reasoning, we design a synthetic
task for each of the three reasoning primitives. We hypothesize that the transformer networks are
flexible enough to learn strong inductive bias from the three synthetic reasoning tasks, which helps to
improve the performance on downstream tasks. Although such inductive bias may be useful in general
reasoning tasks (e.g., NLP tasks), in this work, we focus on mathematical reasoning benchmarks, for
which we expect to observe the largest gains. We call training on these tasks LIME – an acronym
for “Learning Inductive Bias for Mathematical rEasoning”. Note that there is only a limited amount
of pretraining data available for formal mathematical benchmarks, therefore the study of generic
pre-training techniques is particularly important for the success of machine learning in mathematical
reasoning.

We demonstrate that LIME pretrained models provide significant gains across four large mathematical
reasoning benchmarks: IsarStep (Li et al., 2021), HOList Skip-tree (Rabe et al., 2021), MetaMath-
Step (Polu and Sutskever, 2020), and LeanStep de Moura et al. (2015). Notably, LIME improved the
top-1 accuracy from 20.4% to 26.9% IsarStep, and from 15.5% to 29.8% on LeanStep. Compared to
traditional pretraining tasks, LIME has two major differences. First, LIME requires only a fraction
of the computational cost of downstream tasks. With only about two hours of training on a single
modern GPU, one already obtains all the benefits, in contrast to days of training on a large natural
language corpus with hundreds of GPUs/TPUs. Secondly, LIME does not load the input embeddings
or the weights in the output layer for finetuning on downstream tasks. This allows one to use the same
pretrained model for a variety of downstream tasks, which can have vastly different vocabularies due
to language or tokenization differences.

Our method can also be regarded as a form of curriculum learning, in which the model is taught basic,
extremely generic but general skills before being trained on the specific problem domain. We also
show that the pre-trained model can achieve similar gains of improvement for the downstream task,
without loading

To summarize, the contributions of the paper are:
1. Providing the first method to design inductive biases in the form of datasets for mathematical

reasoning.

2. Demonstrating significant improvements in the reasoning performance of transformer models on
four large mathematical reasoning benchmarks with negligible extra computation cost.

3. By showing how pretraining brings benefits other than learning content knowledge, disentangling
the study of its working mechanism.

2 METHODS

In this section, we first discuss the primitives of reasoning, inspired by Peirce’s views, and design one
synthetic task for each reasoning primitive.

2.1 REASONING PRIMITIVES

In Peirce’s view, there are exactly three kinds of reasoning: deduction, abduction, and induction.
Deduction is known as the workhorse for mathematics. It is the process of deriving new facts by
applying logical inference rules to known facts or premises. On the other hand, abduction and
induction can be thought of as the inverses of deduction. If we call the premise used in deduction as
Case, its logical rule as Rule, and its conclusion as Result, then abduction is equivalently the inference
of a Case from a Rule and a Result, while induction may be said to be the inference of a Rule from a
Case and a Result. We summarize the three reasoning primitives in the following table:

Reasoning Primitives Inference Map
Deduction Rule, Case→ Result
Abduction Rule, Result→ Case
Induction Case, Result→ Rule

2

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

2.2 LIME SYNTHETIC TASKS FOR REASONING PRIMITIVES

We design three synthetic tasks inspired by the three reasoning primitives. As discussed in the
previous section, all of the reasoning primitives consist of three essential elements: Rule, Case, and
Result. Inspired by this, we first design a method to generate those elements. Once they are generated,
we can construct tasks that predict one element from the other two. In the following, we describe
one simple way to generate those three elements, though we acknowledge that there are many other
possible approaches.

We require two types of symbols: 1. math symbols, 2. rule symbols. In general, these symbols can
take any forms (e.g., integer representations). But for the ease of discussion, we will think of math
symbols as the union of those operators used in mathematics (e.g., “+− ∗ = ()&”) and lower case
letters (e.g., a, b, c . . .), and rule symbols as upper case letters (e.g., A, B, C . . .). We now construct
Rule, Case, and Result in order:

1. Rule is a randomly sampled string that consists of i) rule symbols and ii) math symbols. The
length of the string is randomly sampled from a range. For instance, a randomly sampled rule can
be: A ∗A+B = C with rule symbols A, B, and C.

2. Case is a dictionary that represents substitutions. For each rule symbol used in the Rule string, we
sample a random string of random length that consists of math symbols. This forms a dictionary,
whose keys are all rule symbols, and the values are the corresponding sampled string. To illustrate,
following the previous example, for each A, B and C, we sample a random string to form a
dictionary as: {A : a, B : b, C : d+ e}.

3. Result is the outcome of the substitution. For each rule symbol in the Rule string, we replace it
with the corresponding value stored in the Case dictionary. This gives rise to the Result string. As
per the previous example, we now substitute A with a, B with b, and C with d+ e into the Rule
string, generating the Result string: a ∗ a+ b = d+ e.

After Rule, Case, and Result are generated, we can construct three tasks for deduction, abduction,
and induction respectively. We define the three synthetic tasks as follows:

• Deduct: Source: Rule string and Case dictionary.
Target: Result string.

• Abduct: Source: Rule string and Result string.
Target: Case dictionary.

• Induct: Source: Case dictionary and Result string.
Target: Rule string.

We also consider a task called Mix, which is a uniform mix of three tasks. Namely, during generation,
we randomly select a task and sample an example from that task. To formulate them as sequence to
sequence tasks, we represent the Case dictionary also as a string, e.g., “{A : a, B : b, C : d+ e}”.
An example of Abduct using the examples of Rule, Case, and Result above is to predict the target
{A : a, B : b, C : d+ e} from the source A ∗A+B = C <s> a ∗ a+ b = d+ e.

Pre-training on our synthetic tasks can be seen as a form of skip-component learning. There are
three essential components: Rule, Case and Result, and we skip one of them and use the remaining
two elements to reconstruct the missing one. Past work has shown that learning to predict missing
words (Devlin et al., 2019), subsequences (Song et al., 2019; Raffel et al., 2020), or subtrees (Rabe
et al., 2021) are strong pre-training tasks.

3 EXPERIMENTS

Table 1: Test top-1, top-10 (%) accuracy on the
IsarStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain (Li et al., 2021) 20.4 33.1
HAT (Li et al., 2021) 22.8 35.2
LIME Deduct 24.7 37.7
LIME Abduct 26.7 41.0
LIME Induct 23.9 38.8
LIME Mix 26.9 40.4

In this section, we present results on four large
mathematical reasoning tasks that are especially
useful in the context of automated theorem prov-
ing. Our results show significant gains in learn-
ing inductive biases from synthetic tasks. We
have selected four tasks to cover various differ-
ent styles of interactive theorem provers: The

3

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

HOL-Light (skip-tree) corpus was created from
very high-level tactic-based proofs, but it is less
interpretable than IsarStep’s declarative style
corpus. We also evaluate the next proof-step
prediction task on the set.mm library of Meta-
Math, which consists of very granular, basic proof steps. Namely, the proof steps are more predicable
and average proof lengths have significantly increased. Due to space limit, we presented the results
of IsarStep and LeanStep in the main paper, and left other results to Appendix C.

3.1 ISARSTEP

50K 100K 150K 200K
Training steps

45

50

55

60

65
Validation BLEU: IsarStep

LIME Deduct
LIME Induct
LIME Abduct
LIME Mix
No pretrain

Figure 1: Validation BLEU along training on
the IsarStep task.

The IsarStep task is taken from Li et al. (2021). Is-
arStep is a task of predicting the missing intermediate
propositions given surrounding propositions to bridge
the gap between the goal and the current state of the
proof. The dataset was mined from the public repos-
itory of formal proofs of the Isabelle proof assistant
(Paulson, 1994). Unlike HOList and MetaMath, Is-
arStep contains mostly declarative proofs, a proof
style close to humans’ prose proofs. The dataset has
a broad coverage of undergraduate and research-level
mathematics and computer science theorems. There
are 820K, 5000, 5000 sequence pairs for the training,
validation, and test sets with a maximum of 800 to-
kens in source sequences and 200 tokens in the target
sequences. Following Li et al. (2021), during train-
ing, we use 512 as the maximum length for both the
source and target, and truncated those that exceed the length to 512. For reporting, we evaluate all
5000 test examples regardless of their lengths.

The results on the IsarStep task for four pretrained models and the baseline transformer model without
pretraining is shown in Table 1. We also include another baseline, HAT transformer introduced in
Li et al. (2021), which is a specially designed hierarchical transformer architecture tailored to this
task. We see the pretrained model achieved substantial improvement over the model trained from
scratch as well as HAT. Notably, the model that was pretrained on Abduct improved the top-10
accuracy from 33.1% to 41.0%, for almost 8% absolute improvement. The model pretrained on Mix
performed the best on top-1 accuracy, improving the baseline by 6.5% accuracy. We also showed the
validation BLEU scores along training in Figure 1. We can see that the pretrained models learned
much faster than the model trained from scratch. With around 50K steps of updates, the pretrained
model already obtained better BLEU scores than the best score achieved by the un-pretrained model.
Moreover, since the downstream task requires 200K steps of training with 4 GPUs, the amount of
computation spent on pretraining is only 2.5% of the downstream task, strongly demonstrating the
efficiency of the proposed pretraining method.

3.2 LEANSTEP: UNSEEN NEXT LEMMA PREDICTION TASK

Lastly, we look at a mathematical benchmark based on Lean 3 theorem prover. Lean has an extremely
active community and is host to some of the most sophisticated formalized mathematics in the world,
including scheme theory Buzzard et al. (2019), forcing Han and van Doorn (2020), perfectoid spaces
Buzzard et al. (2020), and condensed mathematics Scholze (2020). We extracted a similar style of
dataset as MetaMathStep from Lean, that is, we predict the next lemma to apply given the current
goal state (or commonly known as the tactic state in Lean). Unlike MetaMathStep, we focus on
predicting unseen lemmas that have not been seen during training time. Namely, in this task, we
evaluate the model’s capability of conjecturing a novel lemma string given a goal. Specifically, we
extracted 498, 624 number of goal, next lemma pairs from Lean mathlib library mathlib (2020). We
found there are 34, 867 lemmas that appeared only once in the entire dataset. We then randomly
sampled 8k of lemmas from this set and used the corresponding goal lemma pairs for the validation
and the tests (each 4k). As such, during validation and testing, the model needs to predict lemmas
that have not been seen during training. We present the results on LIME and the baseline in Table 4.

4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

We observed a huge gain with LIME pretraining. Remarkably, LIME MIX doubled the top-1 accuracy
compared to the baseline unpretrained model, improving the accuracy from 15.8% to 29.8%.

4 CONCLUSION

In this work, we encoded inductive biases for mathematical reasoning in the form of datasets. We
created three synthetic tasks inspired by three reasoning primitives of deduction, induction, and
abduction. We demonstrated that pretraining on these tasks (LIME) significantly improved the
performances across four mathematical reasoning benchmarks. Notably, LIME requires negligible
computation compared to the downstream task, unlike being the dominating factor in previous
pretraining methods. Our work naturally poses many future research questions. Could the primitive
tasks provide similar gains for NLP tasks? Are there similar primitive tasks for natural language
reasoning? We also look forward to disentangling the effects of pretraining between learning content
knowledge and inductive bias for all downstream tasks to better understand pre-training.

5

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

REFERENCES

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. HOList: An
Environment for Machine Learning of Higher Order Logic Theorem Proving. In 36th International
Conference on Machine Learning, ICML 2019, Long Beach, California, USA, June 9-15, 2019.
URL http://proceedings.mlr.press/v97/bansal19a.html.

Kshitij Bansal, Christian Szegedy, Markus N. Rabe, Sarah M. Loos, and Viktor Toman. Learning to
Reason in Large Theories without Imitation. arXiv preprint arXiv:1905.10501, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon Fernández Mir, and Scott
Morrison. Schemes in lean. arXiv preprint arXiv:2101.02602, 2019.

Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfectoid spaces. In Jasmin
Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, pages 299–312. ACM, 2020. doi: 10.1145/3372885.3373830. URL https:
//doi.org/10.1145/3372885.3373830.

Alexis Conneau and Guillaume Lample. Cross-lingual Language Model Pretraining. In Ad-
vances in Neural Information Processing Systems, NeurIPS 2019, Vancouver, BC, Canada, De-
cember 8-14, 2019, pages 7057–7067, 2019. URL http://papers.nips.cc/paper/
8928-cross-lingual-language-model-pretraining.

Maxwell Crouse, Ibrahim Abdelaziz, Cristina Cornelio, Veronika Thost, Lingfei Wu, Kenneth Forbus,
and Achille Fokoue. Improving Graph Neural Network Representations of Logical Formulae with
Subgraph Pooling. arXiv preprint arXiv:1911.06904, 2019.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pages 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6_26. URL https:
//doi.org/10.1007/978-3-319-21401-6_26.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified Language Model Pre-training for Natural Language Understanding
and Generation. In Advances in Neural Information Processing Systems, NeurIPS 2019, Vancouver,
BC, Canada, December 8-14, 2019, pages 13063–13075, 2019.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can Neural
Networks Understand Logical Entailment? In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?id=SkZxCk-0Z.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. TacticToe:
Learning to Prove with Tactics. Journal of Automated Reasoning, pages 1–30, 2020.

6

http://proceedings.mlr.press/v97/bansal19a.html
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1145/3372885.3373830
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=SkZxCk-0Z

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus N. Rabe, and Bernd Finkbeiner.
Transformers Generalize to the Semantics of Logics. arXiv preprint arXiv:2003.04218, 2020.

Jesse Michael Han. Enhancing SAT solvers with glue variable predictions. arXiv preprint
arXiv:2007.02559, 2020.

Jesse Michael Han and Floris van Doorn. A formal proof of the independence of the continuum
hypothesis. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, January 20-21, 2020, pages 353–366. ACM, 2020. doi: 10.1145/3372885.3373826.
URL https://doi.org/10.1145/3372885.3373826.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global
relational models of source code. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=B1lnbRNtwr.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural computation, 9(8):
1735–1780, 1997.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A learning environment
for theorem proving. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=r1xwKoR9Y7.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. Spanbert:
Improving pre-training by representing and predicting spans. Transactions of the Association
for Computational Linguistics, 8:64–77, 2020. doi: 10.1162/tacl_a_00300. URL https:
//doi.org/10.1162/tacl_a_00300.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
Ske31kBtPr.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning. In Shape, Contour and Grouping in Computer Vision, page 319, Berlin, Heidelberg,
1999. Springer-Verlag. ISBN 3540667229.

Gil Lederman, Markus Rabe, Sanjit Seshia, and Edward A Lee. Learning heuristics for quantified
boolean formulas through reinforcement learning. In International Conference on Learning
Representations, 2020.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Pzj6fzU6wkj.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Lluís Màrquez, Chris Callison-Burch, Jian Su, Daniele Pighin,
and Yuval Marton, editors, Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1412–
1421. The Association for Computational Linguistics, 2015. doi: 10.18653/v1/d15-1166. URL
https://doi.org/10.18653/v1/d15-1166.

7

https://doi.org/10.1145/3372885.3373826
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=r1xwKoR9Y7
https://openreview.net/forum?id=r1xwKoR9Y7
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Ske31kBtPr
https://openreview.net/forum?id=Ske31kBtPr
https://openreview.net/forum?id=Pzj6fzU6wkj
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/d15-1166

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

mathlib. The lean mathematical library. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020,
New Orleans, LA, USA, January 20-21, 2020, pages 367–381. ACM, 2020. doi: 10.1145/3372885.
3373824. URL https://doi.org/10.1145/3372885.3373824.

R. Thomas McCoy, E. Grant, P. Smolensky, T. Griffiths, and Tal Linzen. Universal linguistic inductive
biases via meta-learning. Proceedings of CogSci, abs/2006.16324, 2020.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Waleed Ammar,
Annie Louis, and Nasrin Mostafazadeh, editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Demonstrations, pages
48–53. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-4009. URL
https://doi.org/10.18653/v1/n19-4009.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2967–2974. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/5689.

Isabel Papadimitriou and Dan Jurafsky. Learning Music Helps You Read: Using transfer to study lin-
guistic structure in language models. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 6829–6839, Online, November 2020. Associa-
tion for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-main.554.

Charles Sanders Peirce. Reasoning and the logic of things: The Cambridge conferences lectures of
1898. Harvard University Press, 1992.

Bartosz Piotrowski and Josef Urban. Guiding Inferences in Connection Tableau by Recurrent Neural
Networks. In Christoph Benzmüller and Bruce Miller, editors, Intelligent Computer Mathematics,
pages 309–314, Cham, 2020. Springer International Publishing. ISBN 978-3-030-53518-6.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Markus N. Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical Reasoning via
Self-supervised Skip-tree Training. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=YmqAnY0CMEy.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. In OpenAI Blog, 2018. URL
https://d4mucfpksywv.cloudfront.net/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In Proceedings of International Conference on Learning
Representations (ICLR), 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen Schmidhuber, and Jianfeng
Gao. Enhancing the transformer with explicit relational encoding for math problem solving. CoRR,
abs/1910.06611, 2019. URL http://arxiv.org/abs/1910.06611.

8

https://doi.org/10.1145/3372885.3373824
https://doi.org/10.18653/v1/n19-4009
https://aaai.org/ojs/index.php/AAAI/article/view/5689
https://www.aclweb.org/anthology/2020.emnlp-main.554
https://www.aclweb.org/anthology/2020.emnlp-main.554
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=YmqAnY0CMEy
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1910.06611

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Peter Scholze. Liquid tensor experiment. https://xenaproject.wordpress.com/
2020/12/05/liquid-tensor-experiment/, 2020. Formalization available at https:
//github.com/leanprover-community/lean-liquid.

Daniel Selsam and Nikolaj Bjørner. Guiding High-Performance SAT solvers with Unsat-Core
Predictions. In International Conference on Theory and Applications of Satisfiability Testing,
pages 336–353. Springer, 2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill.
Learning a SAT solver from single-bit supervision. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HJMC_iA5tm.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MASS: masked sequence to sequence
pre-training for language generation. In 36th International Conference on Machine Learning, ICML
2019, Long Beach, California, USA, June 9-15, 2019, 2019. URL http://proceedings.
mlr.press/v97/song19d.html.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

Josef Urban and Jan Jakubův. First Neural Conjecturing Datasets and Experiments. In Christoph
Benzmüller and Bruce Miller, editors, Intelligent Computer Mathematics, pages 315–323, Cham,
2020. Springer International Publishing. ISBN 978-3-030-53518-6.

Pashootan Vaezipoor, Gil Lederman, Yuhuai Wu, Chris J. Maddison, Roger B. Grosse, Edward A.
Lee, Sanjit A. Seshia, and Fahiem Bacchus. Learning Branching Heuristics for Propositional
Model Counting. In AAAI 2021, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem proving by
deep graph embedding. In Advances in Neural Information Processing Systems, pages 2786–2796,
2017.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural ma-
chine translation in autoformalization of mathematics in mizar. Proceedings of ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2020.

Alex Warstadt and Samuel R. Bowman. Can neural networks acquire a structural bias from raw
linguistic data? Proceedings of CogSci, 2020.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Grosse. INT: An Inequality Benchmark for Evaluating
Generalization in Theorem Proving. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=O6LPudowNQm.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In ICLR 2020, 2020.

Kaiyu Yang and Jia Deng. Learning to Prove Theorems via Interacting with Proof Assistants. In
Proceedings of International Conference on Machine Learning (ICML), 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural
Information Processing Systems, NeurIPS 2019, Vancouver, BC, Canada, December 8-14, 2019,
2019.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. PEGASUS: pre-training with
extracted gap-sentences for abstractive summarization. In 37th International Conference on
Machine Learning, ICML 2020, Vienna, Austria, 2020, volume 119. PMLR, 2020.

9

https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid
https://openreview.net/forum?id=HJMC_iA5tm
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
https://openreview.net/forum?id=O6LPudowNQm

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

APPENDIX A SYNTHETIC TASK GENERATION PSEUDOCODE

Symbol-Agnostic Representation In order to solve the synthetic tasks, the model needs to distin-
guish which set of symbols can be substituted (rule symbols). As a result, the model may memorize
information about the symbols that is irrelevant to the inductive biases encoded in the task. To prevent
such memorization, we propose a way to make the synthetic tasks agnostic to the choice of symbols.

We first note that the choice of symbols is irrelevant to our synthetic tasks. To avoid symbol-specific
memorization, for each training and evaluation example, we randomly sample two sets of symbols
to be used in Rules and in the rest of the example. But for the Abduct task, the model needs to
know which symbols are replaced by the Rule part of the example and which symbols are in the
Result language. We simply list the split of the symbols used in the example at the beginning of
the input string, marked by two special symbols, <Rule> and <Math>. They are followed by the
original source string. The target string remains unchanged. For example, the previous example in
the Abduct task becomes,

Source: <Rule> A B C <Math> ∗ + = a b d e <s> A ∗A+B = C <s> a ∗ a+ b = d+ e

Target: {A : a, B : b, C : d+ e}
In our implementation, we use integers to represent symbols. Specifically, for each example, we
sample two disjoint sets of integers from the set {1, . . . , S} to represent the math symbols and the
rule symbols, where S is the size of the vocabulary. In our experiments, we sample 44 math symbols
and 24 rule symbols for each problem. The complete pseudo-code of generating the symbols, Rule,
Case, and Result for one task example is provided in Appendix Algorithm 1.

Algorithm 1
1: function GENERATE_TUPLE(Vocabulary size S)
2: Vocabulary V ← {1, 2, . . . , S}. . Use an integer representation of symbols.

3: Math symbol setM← SAMPLE(V , n=44, replacement=False). . Sample 44 distinct symbols.

4: Rule symbol setR← SAMPLE(V\M, n=20, replacement=False). . Sample 20 distinct symbols.

5: Rule R← SAMPLE(M
⋃
R, n=RANDOM(5,20), replacement=False). . Sample a sequence of

symbols of length between 5 and 20.

6: Case dictionary C ← {}.
7: for s inR do
8: Case dictionary C[s]← SAMPLE(M, n=RANDOM(2,8), replacement=True). . Sample a sequence

of symbols for each rule symbol, of length of length between 2 and 8.

9: end for
10: Result R′← Rule R. . Set result string R′ to be the same as rule string R.

11: for s inR do
12: SUBSTITUTE(R′, s, C[s]). . Substitute every rule symbol s in result string R′ with previously

randomly sampled string C[s].

13: end for
14: return Math symbol setM, Rule symbol setR, Rule R, Case C, Result R′.
15: end function

APPENDIX B EXPERIMENT DETAILS

LIME Pretraining We generate datasets of our synthetic tasks for pretraining: Deduct, Abduct,
Induct, Mix. For pretraining of IsarStep, we used a vocabulary size S of 1000. For the other
two downstream tasks, we used a vocabulary size of 100. The reason we used different vocabulary
sizes was that we found (cf. appendix) the discrepancy in vocabulary size affects the performance
of a downstream task if it has a very large vocabulary size (IsarStep has 28K). We use 44 math
symbols and 24 rule symbols. The length of the Rule string is sampled from 5 to 20, the length
of the string for each substitution (the values of Case dictionary) is sampled from 2 to 8. We used
word-level tokenization for all the tasks. We pretrained the model for 20K updates. For tasks with

10

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 2: Test top-8 Accuracy on Skip-Tree HOList (%).

Model Equation completion Hard type inference Missing assumptions Easy type inference

No pretrain (Rabe et al., 2021) 46.3 95.0 41.8 95.9
LIME Deduct 50.3 94.8 47.9 97.0
LIME Abduct 48.4 94.8 46.1 96.3
LIME Induct 44.8 94.9 42.6 96.4
LIME Mix 51.7 95.6 46.1 97.6

Table 3: Test top-1, top-10 (%) accuracy on the MetaMathStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 67.7 76.5
LIME Deduct 68.8 77.4
LIME Abduct 68.8 76.1
LIME Induct 69.9 78.0
LIME Mix 69.1 77.9

larger vocabulary size (i.e., 1000), we found the learning became more difficult. Hence we used
a curriculum learning scheme: we first trained the model for 10K steps on the same task with a
vocabulary size of 100, then continue training for another 10K step on vocabulary size of 1000. The
pretraining was done on a single Nvidia Tesla T4 GPU with 4 CPU cores for 2 hours. We set the
maximum number of tokens in a batch to 4096, and accumulate four batches of gradients for one
parameter update. We used the Adam optimizer (Kingma and Ba, 2015) with learning rate 3 · 10−4.
We used a dropout rate of 0.1 and label smoothing (Szegedy et al., 2016) with a coefficient 0.1.

Fine-tuning For all the downstream tasks in this section, when loading the pretrained models for
fine-tuning, we do not load in the vocabulary embeddings nor the output layer weights. For the
downstream task IsarStep and MetaMathStep, we used four Nvidia Tesla T4 GPU with 16 CPU
cores for training. We set the maximum number of tokens in a batch to 4096, and accumulated four
batches of gradients for one parameter update. We trained the model for 200K updates. We used the
Adam optimizer, and we searched over the learning rates {3 · 10−4, 7 · 10−4}, and warmup steps
{4000, 8000}. We used a dropout rate of 0.1 and label smoothing with a coefficient 0.1. For the
HOList skip-tree task, we used TPUs for running the experiments. We used a batch size of 256
sequences and trained the model for 1 million updates.

Architecture All experiments used the transformer base model from Vaswani et al. (2017), i.e. 512
hidden size, 2048 filter size, 8 attention heads. For the IsarStep and MetaMathStep task, we used 6
layers for both the encoder and decoder, implemented using fairseq (Ott et al., 2019). For the HOList
skip-tree experiment, we used a somewhat modified transformer architecture with 8 encoder and 4
decoder layers of the same size as above in which the self-attention and attention over the encoder
output were merged.

Evaluation During training, we kept track of the best validation tokenized BLEU score 1, and we
used the model with validation BLEU for evaluation on the test set. We report top-1 and top-10
accuracies. We consider an output sequence as correct if it matches the target sequence exactly. We
performed a beam search with width 10. The top-1 accuracy is then defined as the percentage of
the best output sequences that are correct. The top-n accuracy is defined as the percentage of target
sequences appearing in the top n generated sequences.

11

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 4: Test top-1, top-10 (%) accuracy on the LeanStep unseen lemma prediction task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 15.8 27.4
LIME Deduct 25.8 38.0
LIME Abduct 26.0 38.6
LIME Induct 25.0 38.2
LIME Mix 29.8 41.8

APPENDIX C OTHER MATHEMATICAL REASONING BENCHMARKS

APPENDIX C.1 HOLIST SKIP-TREE

As the second mathematical reasoning benchmark, we consider the HOList skip-tree evaluation
tasks by Rabe et al. (2021). These tasks include two variants of type inference, predicting under
which assumptions theorems hold, and completing equalities. All source expressions for these tasks
are taken from the validation set of the theorem database of the HOList proof logs (Bansal et al.).
The evaluations are done on a random sample of 1000 instances from the full evaluation sets. We
initialized the model parameters with the pretrained weights and then repeated the experiments
by Rabe et al. (2021). That is, we trained the models for up to 1M parameter updates on the training
set with batch size 256 and repeat the evaluation every 100K steps. In Table 2 we present the best
result from these 10 evaluation runs. We see a significant improvement in these reasoning tasks when
the models are initialized with the pretrained weights. Notably, on equation completion and missing
assumptions task, we improved the beam search (with width 8) exact match rate performance from
46.3% to 51.7% and 41.8% to 47.9%. Note that this is despite the amount of pretraining compute cost
being negligible: it takes less than 1 percent of the cost of the downstream task training. Pretraining
used 1/20 number of the update steps (50K vs 1M) with 8 (and 4) times smaller batches (pretraining
has much shorter sequence lengths, 128 vs. 1024 and 512, respectively).

APPENDIX C.2 METAMATHSTEP

Compared to other ITPs, MetaMath is a low-level proving system: each proof step makes only a
small step towards the goal. As such, each proof contains many more proof steps than in other ITPs:
with 37, 000 theorems in the human-written theorem library, there are around 3 million proof steps.
We extract the proof steps and use them to construct a sequence-to-sequence task following Polu and
Sutskever (2020) (their proof step training objective).

In this task, the model is asked to generate PROOFSTEPS given a GOAL, namely, the GOAL string
is the source input, and PROOFSTEPS is the target output. We follow Polu and Sutskever (2020)
and use their string representation for the GOAL and the PROOFSTEPS. Instead of using subword
tokenization in Polu and Sutskever (2020), we use a character-level representation for our task.
Following Polu and Sutskever (2020), we split theorems into train/valid/test theorems of size 35K,
1K, 1K, and associate all proof steps of a theorem with that split. For each dataset, we filter examples
with lengths longer than 1024. This reduced the total number of proof steps to 1.4 million. For
validation and test set, we randomly sample 3000 examples out of 40K (after filtering) and perform
validation and test evaluations on them. In Table 3 we present the impact of LIME on MetaMathStep.
We also observe gains from LIME on this dataset, with the model trained on Induct task achieving
2.2% top-1 and 1.5% top-10 test accuracy improvement. Similarly, as for the IsarStep task, the
computation spent on pretraining is only 2.5% of the downstream task.

APPENDIX D OTHER SYNTHETIC TASKS

In this section, we give descriptions of other variants of the synthetic tasks we considered than the
ones introduced in the main paper.

1https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/
translation.py#L396

12

https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L396
https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L396

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

APPENDIX D.1 REWRITE AND REWRITE_MULTISTEP

We propose a rewrite task, inspired by the rewrite tactic used in interactive theorem provers. The
Rewrite task requires the model to rewrite a string according to a rule transformation. One example
of the task is:

Source: a+ b− c <s> A+B = B +A

Target: b+ a− c

“A+B = B +A“ is the rule transformation, which is applied to the LHS string “a+ b− c”. The
model needs to predict the RHS string as the result of the rule application, i.e., b+ a− c. Besides rule
symbols and math symbols, we also require the third set of symbols, named as "string symbols". For
the ease of our discussion, we we will think of math symbols as the union of those operators used in
mathematics (e.g., “+− ∗ = ()&”), rule symbols as upper case letters (e.g., A, B, C . . .), and string
symbols as lower case letters (e.g., a, b, c . . .). We first sample a random string as the LHS string,
consisting of math symbols and string symbols (e.g., a+ b− c). We sample a sub-string of the LHS
string, and replace the string symbols in the sub-string with rule symbols. For example, we sample
and obtain the substring a+ b from a+ b− c, and we replace a, b with rule symbols A, B. This then
forms the LHS of the rule transformation, A+B, with the substitution dictionary {A : a,B : b}. We
then sample the RHS of the rule transformation from the union of rule symbols A and B, and all math
symbols, e.g., B +A. This gives the rule transformation A+B = B +A. We substitute the value
of the substitution dictionary for each rule symbol in the RHS rule, and then substitute back to the
original LHS string to obtain b+ a− c. The task example is constructed by using the LHS string and
the rule transformation as the source input, and use the result of the rule transformation as the target.

We further introduce a multi-step version of the rewrite task: Rewrite_multistep. In this task,
the source may contain more than one rewrite rule, and the target is the result of applying all the
rewrite rules in a sequence. This task is motivated from the need to perform multi-step planning in
mathematical reasoning tasks. During pre-training, for each training example, we uniformly sample
the number of rewrite steps from 1 to 5.

APPENDIX D.2 OTHER VARIANTS OF INDUCT TASK

We introduce three other variants of the Induct task.

1. Induct_v2: We move the Case dictionary from the source input to the target output. This
makes the task significantly harder, which requires the agent to synthesize a rule and a
possible explanation (Case) to explain the Result.

2. Induct_v3: Instead of providing the Case dictionary, we provide two Result strings,
coming from the same Rule. Namely, we sample two Case dictionaries, and applying each
to the Rule string to obtain two Result strings. Both Result strings are used as source, and
the target is the Rule string.

3. Induct_rewrite: We also create a “induction” version of the Rewrite task. In this
task, the source is the LHS string concatenated with the RHS string, that is the result of the
rewrite. The target is the rewrite rule that is used to do the rewrite.

APPENDIX D.3 A FULL COMPARISON OF ALL SYNTHETIC TASKS

In this section we present a full comparison for all synthetic tasks. We followed the training protocol
in Appendix B and evaluate the method on IsarStep. The results are reported in Table 5. We can see
that the Rewrite_multistep achieved the best performance across all synthetic tasks, surpassing
the baseline by 8.2% for Top-1 accuracy and 10.8% for Top-10 accuracy. This indicates the inductive
bias for long horizon reasoning encoded in Rewrite_multistep is very useful for the reasoning
task.

APPENDIX E ABLATION STUDIES

In this section, we perform ablation studies.

13

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 5: Test top-1, top-10 (%) accuracy on the IsarStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain (Li et al., 2021) 20.4 33.1
HAT (Li et al., 2021) 22.8 35.2
LIME Deduct 24.7 37.7
LIME Abduct 26.7 41.0
LIME Induct 23.9 38.8
LIME Mix 26.9 40.4
LIME Rewrite 26.0 38.6
LIME Rewrite_multistep 28.6 43.9
LIME Induct_v2 25.6 39.8
LIME Induct_v3 25.0 38.8
LIME Induct_rewrite 25.8 39.5

Table 6: Comparisons to other pretraining tasks on IsarStep task.

Model Top-1 Acc. Top-10 Acc

No pretrain (Li et al., 2021) 20.4 33.1
LIME Mix 26.9 40.4
Pretrain on MetaMathStep 23.1 35.7
Pretrain on WMT En-De 17.2 30.3

APPENDIX E.1 PRETRAINING ON FORMAL REASONING AND NATURAL LANGUAGE TASKS

Here we investigate how LIME compares to pretraining on natural language or existing formal
reasoning datasets. In this set of experiments, we pretrained three models on Mix, MetaMathStep,
and on the WMT 2016 English-to-Germany (WMT En-De) translation task, and then we fine-tuned
and evaluated these models on the IsarStep task. We pretrained the model on MetaMathStep and
WMT EN-DE for 200K steps with 4 GPUs, which is 40 times more computation spent than on LIME.
Due to the mismatch between vocabularies of the pretraining task and the downstream task, we do not
load the vocabulary embeddings nor output layer weights. The results in Table 6 show that pretraining
on MetaMathStep did provide gains, though significantly smaller than gains provided by LIME Mix,
despite their 40 times higher computational cost. Moreover, pre-training on WMT translation had
even a negative effect on the performance. We also conducted an analogous experiment with an
evaluation on the MetaMathStep. The result is shown in Table 7. In contrast to MetaMath helping
IsarStep, we see that pretraining on IsarStep task did not help the downstream task MetaMathStep.
We hypothesize that this could be due to MetaMathStep task is closer to the LIME tasks than IsarStep,
and hence providing more gains than the opposite direction. We leave investigations to the future
versions.

APPENDIX E.2 DO WE NEED VOCABULARY EMBEDDINGS FOR FINE-TUNING?

As mentioned earlier, we did not load in the vocabulary embeddings from the pretrained models
when we switched to fine-tuning on downstream tasks. Even without loading the vocab embeddings,
the pretrained models still improved the performance. In this ablation study, we investigate how
much this decision has affected the results and whether vocabulary embeddings can help improve the
performance even further. We performed the comparisons on IsarStep. The task contains a token
vocabulary of size 28336. We generated new synthetic tasks for the same vocabulary size, such that
we can load the vocabulary embeddings and output layers when initializing the model for IsarStep.
Table 8 shows that this led to similar performance. This aligns with our expectation that the model
should not learn content specific knowledge that is potentially stored in the vocabulary. These weights
turn out to be non-essential for the final performance, supporting the evidence that the transformer
learns inductive biases from the pretraining task.

14

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 7: Pretraining on IsarStep for the MetaMathStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 67.7 76.5
LIME Mix 69.1 77.9
Pretrain on IsarStep 67.0 76.1

Table 8: Whether one needs to load vocabulary embeddings and output layer weights on IsarStep
tasks.

Model Top-1 Acc. Top-10 Acc

No pretrain (Li et al., 2021) 20.4 33.1
LIME Mix 26.9 40.4
LIME Mix + Loading All Weights 26.7 40.6

APPENDIX E.3 DOES LIME HELP LSTMS?

In this section, we investigate if LIME also helps other architectures than transformers. In particular,
we applied LIME to two LSTM based architectures: 1. vanilla LSTM, 2. LSTM with attention
mechanism. The vanilla LSTM is a stacking LSTM with 4 layers, each with 1000 cells, and 1000-
dimensional embeddings. The LSTM with attention architecture is taken from Luong et al. (2015),
also with 4 layers, 1000 cells and 1000-dimensional embeddings. We evaluate on the IsarStep task,
and compared a model trained from scratch and a model pre-trained on LIME abduct task. We
used the same training protocol as described in Appendix B. The results are shown in Table 9,
along with the results on transformer. We observe that LIME improved LSTM as well as LSTM with
attention, but the improvements were small compared to transformer. Specifically, if we compare
Top-1 accuracy, we can see that LIME improved LSTM from 5.5% to 6.9%, LSTM with attention
from 12.3% to 13.4%, and transformer from 20.4% to 26.7%. This observation is aligned with
our hypothesis that the transformer is a malleable architecture and hence it is capable of learning
architectural inductive biases from datasets. This is mainly attributed to the potential of learning
dynamic attention graphs in self-attention layers. We note that this still warrants further investigation
as the performance of these architectures are not at the same level, and that may also lead to different
improvements.

APPENDIX E.4 DOES THE VOCABULARY SIZE MATTER?

In this section, we investigate whether the vocabulary size S in the synthetic task generation algorithm
has an effect on the performance. We used the REWRITE task for the experiment in this section.
We generated datasets of various vocabulary sizes, 100, 512, 1000, 5000, 25000. We used the same
curriculum learning for pre-training as described in Appendix B on larger vocabulary sizes: first
training on the Rewrite task of vocabulary size 100 for 10K steps, then training on each individual
dataset for another 10K steps. We compare the performance on the downstream task Isarstep. The
results are presented in Table 10. We see that when the vocabulary size is equal or larger than 512,
the performance were similar. The smallest vocabulary size 100 obtained the worst performance
among all, and all the other four models achieved similar BLEU scores. The model trained on the
largest vocabulary achieved best performance on top-1 accuracy and top-10 accuracy. The results
show there is a non-trivial effect of the vocabulary size of the synthetic task to the performance of the
downstream task. Hence we use vocabulary size of 1000 for all the experiments in the main paper.
We leave investigations of the causes to future work.

APPENDIX F DOES LIME ENCODE INDUCTION, DEDUCTION AND
ABDUCTION?

Although LIME has shown to achieve substantial improvements across various benchmarks, it is not
entirely clear that the specific synthetic tasks necessarily enforce the reasoning ability of induction,

15

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 9: Comparing LIME’s benefits on LSTMs on the IsarStep Task

Model Top-1 Acc. Top-10 Acc.

LSTM 5.5 11.3
LSTM + LIME Abduct 6.9 14.3
LSTM + attention 12.3 22.7
LSTM + attention + LIME Abduct 13.4 26.3
Transformer 20.4 33.1
Transformer + LIME Abduct 26.7 41.0

Table 10: Vocabulary sizes’ effects on the IsarStep task.

Model Top-1 Acc. Top-10 Acc

No pretrain 20.4 33.1
LIME on Rewrite, S = 100 24.1 37.5
LIME on Rewrite, S = 512 25.4 38.8
LIME on Rewrite, S = 1000 26.0 38.6
LIME on Rewrite, S = 5000 25.8 38.5
LIME on Rewrite, S = 25000 27.4 40.9

deduction and abduction. We would like to note that deduction, induction, and abduction are high-
level and philosophical concepts, and serve only as an inspiration for us to design the synthetic tasks.
We do not expect the model will necessarily learn exactly these three capabilities. After all, we have
chosen a particular implementation of "Case", "Rule" and "Result". Furthermore, we also design
tasks mimic proof steps in formal theorem proving (see the rewrite task in Appendix Appendix D.1),
which also achieved excellent results. Nevertheless, we believe LIME is a first step towards building
reasoning inductive biases, and provides many inspirations and directions for future work.

APPENDIX G RELATED WORK

Learning Models Applied to Mathematics There has been increasing interest in applying deep
learning methods to Interactive Theorem Provers (ITP) (Bansal et al.; 2019; Gauthier et al., 2020;
Huang et al., 2019; Yang and Deng, 2019; Wu et al., 2021; Li et al., 2021; Polu and Sutskever,
2020). The work that is most related to ours is GPT-f (Polu and Sutskever, 2020). The authors
performed pretraining on several natural language corpora and showed significant improvements for
an ITP system – MetaMath. Different from ours, they used GPT-style large-scale language modeling
pretraining, which dominates the computation cost compared to the downstream task. We, on the
other hand, propose pretraining on a few lightweight synthetic tasks costing only a minor fraction of
the computation spent on the downstream task.

Lample and Charton (2020) have demonstrated that transformer models can be used for symbolic
mathematics by successfully predicting the integrals of formulas from a randomly generated dataset.
Similar observations are made for logical problems relevant to verification: that transformer networks
can learn the semantics of logics (Hahn et al., 2020). Rabe et al. (2021) have shown that mathematical
reasoning can emerge from self-supervised training alone. Li et al. (2021) show that language models
can learn to synthesize missing high-level intermediate propositions given a local context. Piotrowski
and Urban (2020) used RNNs in automated theorem provers for first-order logic. Wang et al. (2020)
explored the use of machine translation to translate between synthetically generated natural language
descriptions of proofs and formally represented proofs. Urban and Jakubův (2020) present initial
experiments on generating mathematical conjectures with a Transformer model.

Saxton et al. (2019) suggest a dataset for the analysis of mathematical reasoning skills. In contrast to
the datasets considered here, their dataset is synthetic, focuses on calculation with concrete numbers,
and only contains relatively few symbolic tasks.

16

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Language Model Pretraining The advent of the transformer architecture (Vaswani et al., 2017)
and the BERT style pretraining (Devlin et al., 2019) represented a huge improvement in the quality
of language modeling. Since then, an explosion of research activity in the area pushed the quality of
language models through better pretraining tasks. Where BERT (Devlin et al., 2019) masks out a frac-
tion of the input tokens, later works demonstrated the advantages of masking out subsequences (Song
et al., 2019; Dong et al., 2019; Joshi et al., 2020; Raffel et al., 2020; Conneau and Lample, 2019) and
whole sentences (Zhang et al., 2020).

Besides the choice of pretraining tasks, the scale of language models is also an important factor.
Language models improve in quality and develop new abilities as they grow larger while trained on
the same data (Radford et al., 2018; Raffel et al., 2020; Brown et al., 2020).

Inductive Biases in General There have been works studying learning inductive biases in other
contexts. In particular, McCoy et al. (2020) studied whether one can learn linguistic inductive biases
on synthetic datasets via meta-learning. Papadimitriou and Jurafsky (2020) shows inductive biases
learned in music data can be useful for natural language. They further designed several synthetic tasks
and showed similar kind of improvements for natural language tasks. From a more theoretical point of
view, Xu et al. (2020) formalize an aspect of inductive (architectural) bias under the context of GNNs,
with a notation called architectural alignment. The architecture is aligned when the architecture
can perfectly simulates the ground truth solution. But their work is limited to showing alignment
in combinatorial problems, whose ground truth solutions are known. In contrast, our work tries to
learn architectural bias by relying on the flexible Transformer architecture and training on synthetic
datasets.

Inductive Biases for Mathematics Previous work studying inductive biases for logical reasoning
has focused on encoding bias in the neural architecture. Initial works focused on encoding the tree
structure of expressions using TreeRNNs (Evans et al., 2018). Graph neural networks are shown to
provide a much stronger performance than tree models in premise selection (Wang et al., 2017) and
theorem proving (Paliwal et al., 2020). GNNs also scale to larger formulas in SAT (Selsam et al.,
2019; Selsam and Bjørner, 2019; Han, 2020), QBF (Lederman et al., 2020), and #SAT (Vaezipoor
et al., 2021). Crouse et al. (2019) have shown that pooling mechanisms can have an impact on the
performance of GNNs on logical formulas as well. Closely related, Hellendoorn et al. (2020) have
shown that it can be helpful to hard-code the tree structure of programs in the attention mask of
transformers. Schlag et al. (2019) developed an architecture for encoding relational information
using tensor product representation for mathematical reasoning.

17

	Introduction
	Methods
	Reasoning Primitives
	LIME Synthetic Tasks For Reasoning Primitives

	Experiments
	IsarStep
	LeanStep: Unseen Next Lemma Prediction Task

	Conclusion
	Synthetic Task Generation Pseudocode
	Experiment Details
	Other mathematical reasoning benchmarks
	HOList Skip-Tree
	MetaMathStep

	Other synthetic tasks
	Rewrite and Rewrite_multistep
	Other variants of Induct Task
	A full comparison of all synthetic tasks

	Ablation Studies
	Pretraining on Formal Reasoning and Natural Language Tasks
	Do we need vocabulary embeddings for fine-tuning?
	Does LIME help LSTMs?
	Does the vocabulary size matter?

	Does LIME encode Induction, deduction and abduction?
	Related Work

