
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

A HINT FROM ARITHMETIC:
ON SYSTEMATIC GENERALIZATION OF PERCEPTION,
SYNTAX, AND SEMANTICS

Qing Li, Siyuan Huang, Yining Hong, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu
University of California, Los Angeles
{liqing, huangsiyuan, yininghong, yixin.zhu}@ucla.edu, {ywu,sczhu}@stat.ucla.edu

ABSTRACT

Inspired by humans’ remarkable ability to master arithmetic and generalize to
unseen problems, we present a new dataset, HINT, to study machines’ capabil-
ity of learning generalizable concepts at three different levels: perception, syntax,
and semantics. In particular, concepts in HINT, including both digits and opera-
tors, are required to learn in a weakly-supervised fashion: Only the final results
of handwriting expressions are provided as supervision. Learning agents need to
reckon how concepts are perceived from raw signals such as images (i.e., percep-
tion), how multiple concepts are structurally combined to form a valid expression
(i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e.,
semantics). With a focus on systematic generalization, we carefully design a five-
fold test set to evaluate both the interpolation and the extrapolation of learned
concepts. To tackle this challenging problem, we propose a neural-symbolic sys-
tem by integrating neural networks with grammar parsing and program synthe-
sis, learned by a novel deduction–abduction strategy. In the experiments, the pro-
posed neural-symbolic system demonstrates strong generalization capability and
significantly outperforms end-to-end neural methods like RNN and Transformer.
An additional preliminary few-shot study also indicates that the proposed neural-
symbolic system can quickly learn new concepts with limited examples.1

1 INTRODUCTION syntax

perception

semantics

LearnLearn

GeneralizeGeneralize

+

3 ×

9 2

+

8 -

6 1)(

÷

× -

9 7)(4 5

1+1=2
2×3=6
7–2=5

6×9=54
31–7=24
17+23=40

Figure 1: Concept learning and generalization
on perception, syntax, and semantics.

Humans possess a versatile mechanism for
learning concepts (Firestone & Scholl, 2016).
Take the arithmetic examples in Fig. 1: When
we master concepts like digits and operators,
we not only know how to recognize, write, and
pronounce them—what these concepts mean at
the perceptual level, but also know how to com-
pose them into valid expressions—at the syn-
tactic level, and how to calculate the results
by reasoning over these concepts—at the se-
mantic level. Learning concepts rely heavily on
these three-level interweaving meanings. Such
observation also conforms with the classic view
of human cognition, which postulates at least
three distinct levels of organizations in com-
putation systems (Pylyshyn, 1984). Crucially, a
unique property of human concept learning is its systematic generalization (Xie et al., 2021; Lake
et al., 2017; Fodor et al., 1988). Once we master arithmetic using short expressions with small num-
bers, we can generalize to novel, long expressions with unseen handwriting and large numbers.

To examine the versatile humanlike capabilities of concept learning with a focus on systematic gen-
eralization, we introduce a new benchmark HINT, Handwritten arithmetic with INTegers. The task
of HINT is intuitive: Machines take as input images of handwritten expressions and predict the final
results of expressions, restricted in the integer space. The task of HINT is also challenging: Concepts

1Check the project website: tinyurl.com/iclr21hint for the dataset, the code, and a demo video.

1

https://tinyurl.com/iclr21hint

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

in HINT, including digits and operators, are learned in a weakly-supervised manner. Using final re-
sults as the only supervision, the three-level meanings are presumably intertwined during learning.
To provide a holistic and rigorous test on whether learning machines can generalize the learned con-
cepts, we carefully design an evaluation scheme to test generalization capabilities (i.e., interpolation
and extrapolation) at different levels of meanings (i.e., perception, syntax, and semantics).

Inspired by the superb generalization capability demonstrated in symbolic systems with combina-
torial structure (Fodor et al., 1988) and recent advances in neural-symbolic integration (Li et al.,
2020a; Yi et al., 2018; Manhaeve et al., 2018), we propose an Arithmetic Neural-Symbolic (ANS)
system to approach the HINT challenge. The proposed ANS system integrates the learning of percep-
tion, syntax, and semantics in a principled framework; see an illustration in Fig. 2. Specifically, we
first utilize ResNet-18 (He et al., 2016) as a perception module to translate a handwritten expression
into a symbolic sequence. This symbolic sequence is then parsed by a transition-based neural de-
pendency parser (Chen & Manning, 2014), which encodes the syntax of concepts. Finally, we adopt
functional programs to realize the semantic meaning of concepts, thus view learning semantics as
program induction (Ellis et al., 2020). We derive a novel deduction-abduction strategy to coordinate
the learning of different modules. During learning, the system first performs greedy deduction over
these modules to propose an initial, rough solution, which is likely to produce a wrong result. A
one-step abduction over perception, syntax, and semantics is then applied in a top-down manner to
rectify the initial solution. The revised solution provides pseudo supervisions on the intermediate
values and representations, which are then used to train each module individually.

Evaluated on HINT, ANS exhibits strong systematic generalization with an overall accuracy of 72%,
outperforming end-to-end neural methods by nearly 33%. Results also indicate the strong general-
ization of ANS relies on its underlying symbol system (Fodor et al., 1988) encoded with recursive
priors, which facilitate the extrapolation on syntax and semantics. A preliminary study of few-shot
learning further demonstrates that ANS can quickly learn new concepts with limited examples, ob-
taining an accuracy of 62% on four new concepts with a hundred training examples.

2 THE HINT BENCHMARK

Task Definition The task of HINT is intuitive and straightforward: It is tasked to predict the final
results of handwritten arithmetic expressions in a weakly-supervised manner. Only the final results
are given as supervision; all intermediate values and representations are latent, including symbolic
expressions, parse trees, and execution traces.

Data Generation The data generation process follows three steps; see Fig. S1 for an illus-
tration. First, we extract handwritten images from CROHME to obtain primitive concepts t0„
9,`,´,ˆ,˜, p, qu. Second, we randomly sample prefix expressions and convert them to infix ex-
pressions with necessary parentheses based on the operator precedence; we only allow single-digit
numbers in expressions. These symbolic expressions are fed into a solver to calculate the final re-
sults. Third, we randomly sample handwritten images for symbols in an expression and concatenate
them to construct final handwritten expressions. We only keep the handwritten expressions as input
and the corresponding final results as supervision; all intermediate results are discarded.

Train and Evaluation To evaluate how well the learned concepts are systematically generalized,
we replace the typical i.i.d. train/test split with a carefully designed evaluation scheme:

DtrainĂDtrain“tpx, yq : |x| ď 10,maxpvqď 100u, Dtest“D
p1q
testYD

p2q
testYD

p3q
testYD

p4q
testYD

p5q
test,

D
p1q
test“Dtrain, no generalization on either syntax or semantics

D
p2q
testĂDtrainzDtrain, interpolation on both syntax and semantics

D
p3q
testĂtpx, yq : |x| ď 10,maxpvqą 100u, interpolation on syntax and extrapolation on semantics

D
p4q
testĂtpx, yq : |x| ą 10,maxpvqď 100u, extrapolation on syntax and interpolation on semantics

D
p5q
testĂtpx, yq : |x| ą 10,maxpvqą 100u, extrapolation on both syntax and semantics

where x is the handwritten expression, |x| its number of operators, y the final result, and v all the
intermediate values generated when calculating the final result. All subsets in the test set requires
generalization on perception, since all images in the test set are unseen in training.

2

https://www.cs.rit.edu/~crohme2019/

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

In
fe
re
nc

e

��������������

Le
ar
ni
ng

���������

���������

��
�
�
�
�
�
�
�
�
�

�����������
��������� ���

������������
����
	���������� ��←��

������� ���
����������

������� ����
	� ��←��
����� ���
����� 	����
	� ��→��
��� 	����
	� ��→��

��������� ���������

�	���
����

�����������
�

�� �

� � ��

���������

�� �

� �

�

�������������

+ 11

3 3 × 8

4 4 2 2

): ()→����, ()→����, ()→����

0: ()→0, ()→5, ()→0,()→0

9: ()→9, ()→9, ()→0,()→9
+: (3,18)→21,(4,2)→6, (9,2)→5
−: (1,2)→0, (6,1)→5, (2,7)→9
×: (9,2)→18, (1,6)→6, (4,1)→9
÷: (0,2)→0, (9,3)→3, (8,5)→2
(: ()→����, ()→����, ()→����

���

�����	�������

+ 21

3 3 ×18

9 9 2 2

	����

+ 2 1

3 3 ×18

9 9 2 2

�����������	����

7 + 4 × 4 23
���������������������������������������

+ 35

4 47 7

× 287 7

+ 23

4 44 4

× 167 7

������������
���	����������������
× 44

4 47 7

4 4+ 11

+ 23

4 44 4

× 167 7

+ 23

4 44 4

× 167 7

+ 15

4 44 4

× 87 7

�������������������������������������

Figure 2: The Arithmetic Neural-Symbolic model (ANS). . During inference, the model performs
greedy deduction over (a) perception , (b) syntax, (c) semantics, and directly proposes a solution.
During learning, the proposed solution is further revised by performing (d) abduction based on the
ground-truth supervision. The updated solution is stored in a buffer, providing pseudo supervisions
to train three modules individually. Each node in the solution tree is a triplet of (image, symbol,
value). Parts revised in abduction are highlighted in red.

3 ARITHMETIC NEURAL-SYMBOLIC (ANS) MODEL

To approach the HINT challenge, we propose a neural-symbolic model ANS, which integrates the
learning of perception, syntax, and semantics in a principled framework; see an illustration in Fig. 2.

The perception module is a standard ResNet-18 (He et al., 2016) to map a handwritten expression
x into a symbolic expression s. Since disentangling visual symbols from handwritten expressions is
trivial in this domain, we assume the input as a sequence of handwritten images, where each image
contains one symbol. Since learning it from scratch is prohibitively challenging, the ResNet-18 is
pre-trained unsupervisedly (Van Gansbeke et al., 2020) on unlabeled handwritten images.

To parse the symbolic sequence into a syntactic tree, we adopt a greedy transition-based neural de-
pendency parser (Chen & Manning, 2014), commonly used for parsing natural language sentences.
The transition-based dependency parser relies on a state machine that defines the possible transitions
to parse the input sequence into a dependency tree; see panel (b) of Fig. 2. The learning process in-
duces a model to predict the next transition in the state machine based on the transition history. The
parsing process constructs the optimal sequence of transitions for the input sequence. A dependency
parser for arithmetic expressions is essentially approximating the Shunting-yard algorithm.

To learn semantics as programs, we start from DreamCoder (Ellis et al., 2020), which embodies a
wake-sleep Bayesian program induction approach to progressively learn multiple tasks from a set
of domain primitives and input-out pairs for each task. For arithmetic reasoning, the Peano axioms
(Peano, 1889) define four primitives: (1) 0; (2) inc: aÑ a`1; (3) dec: aÑmaxp0, a´1q; (4) if:
pa, b, cqÑ b pif a is 0q or c pelseq. This set of primitives is augmented with a recursion primitive,
Y-combinator (a.k.a., fixed-point combinator). The Y-combinator enables the derivation of recursive
functions and is the crux of extrapolating to large numbers.

The abduction is applied over perception, syntax, and semantics in a top-down manner to rectify
the initial solution, as illustrated in Fig. 2. The revised solution provides pseudo supervision on the
intermediate values and representations, which are then used to train each module individually.

Please refer to Appendix B for more details on the model and experimental settings.

4 RESULTS AND DISCUSSIONS

4.1 NESY V.S. E2E NEURALNETS
Table 1: The performance comparison of ANS and
end-to-end neural networks, i.e., GRU (BiGRU)
and Transformer (TRAN).

Input Model Test Accuracy (%)
Overall 1 2 3 4 5

Symbol
(Embedding)

BiGRU 49.71 97.05 63.67 11.58 52.41 12.57
TRAN 34.58 98.31 29.79 2.91 26.39 2.76
ANS 88.36 99.26 97.56 84.66 87.65 65.37

Image
(ResNet-18)

BiGRU 39.39 87.02 46.17 6.51 40.44 6.47
TRAN 32.95 87.31 30.74 2.67 31.17 2.55
ANS 71.97 89.10 84.29 66.77 68.19 40.73

We compare the performance of the proposed
neural-symbolic model ANS with end-to-end
neural baselines on HINT. As shown in Table 1,
both BiGRU and TRAN obtain high accuracy
on the test subset 1, which indicates that they
can generalize over perception very well. How-
ever, their performances drop significantly on
the test subsets 2„5, which require systematic generalization over syntax and semantics. Notably,
their accuracy is less than 10% on test subsets 3 and 5 that involve larger numbers compared to the
training set. This result indicates that the pure neural models do not learn the semantics of concepts
in a generalizable way and fail to extrapolate to large numbers. In contrast, the proposed ANS model
consistently outperforms BiGRU and TRAN by at least 30 absolute percent across all test subsets

3

https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Fixed-point_combinator

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Training epochs1 2: master counting 3: master + and − 6: master × and ÷

Figure 3: The evolution of semantics in ANS from initial primitives {0,inc,dec,if,Y}.

2„5. This superb performance demonstrates the strong systematic generalization of ANS, including
both interpolation and extrapolation w.r.t. syntax and semantics.

How do models extrapolate? Among the generalization capability, we are particularly interested
in extrapolation. Based on the experimental results, we firmly believe that the key is recursion. In
ANS, the extrapolation on syntax is achieved by the transition system of the dependency parser,
which recursively applies transition actions to parse arbitrarily long expressions. The extrapolation
on semantics is realized by the recursion primitive, i.e., Y-combinator. It allows programs to rep-
resent recursive functions, which can decompose large numbers into smaller ones by recursively
invoking themselves. For BiGRU, although the recurrent structure in its hidden cells serves as a
recursive prior on syntax, no such prior in its representation for semantics. This deficiency explains
why BiGRU would achieve a decent accuracy (40.44%) on the test subset 3 (extrapolation only on
syntax) but a much lower accuracy (6.51%) on the test subset 4 (extrapolation only on semantics).
Taken together, these observations strongly imply that the recursive prior on task-specific represen-
tations is the crux of extrapolation, which is also in line with the recent analysis of Graph Neural
Network, where it successfully extrapolates algorithmic tasks due to the task-specific non-linearities
in the architecture or features (Xu et al., 2020b;a).

4.2 ABLATION STUDY Table 2: Ablation study on ANS. Xindicates that
the ground-truth labels are given during training.

Training Setting Test Accuracy (%)
Per. Syn. Sem. Overall 1 2 3 4 5

71.97 89.10 84.29 66.77 68.19 40.73
X 86.44 94.53 91.62 89.58 78.22 71.18

X 80.14 92.51 90.16 71.32 84.27 56.27
X 88.36 99.26 97.56 84.66 87.65 65.37
X X 97.81 100.00 100.00 96.66 100.00 90.97
X X 95.84 99.60 98.23 98.09 91.50 88.20

X X 88.93 94.30 92.19 90.06 82.99 80.88

Table 2 shows an ablation study on the pro-
posed ANS model. In general, providing the
ground-truth meaning of concepts can ease
the learning and lead to higher test accuracy.
Among the three levels of concepts, perception
is the hardest to learn since the handwriting im-
ages possess a large variance in terms of the visual appearance. The syntax and semantics are rel-
atively easier to learn, since the recursive prior of the transition-based dependency parser and Y-
combinator fits the task well.

Fig. 3 illustrates the typical pattern of the evolution of semantics in ANS. This pattern is highly in
accord with how children learn arithmetic in developmental psychology (Carpenter et al., 1999):
The model first masters the semantics of digits as counting, then learns ` and ´ as recursive
counting, and finally it figures out how to define ˆ and ˜ based on the learned programs for ` and
´. Crucially, ˆ and ˜ are impossible to be correctly learned before mastering ` and ´. The model
is endowed with such an incremental learning capability since the program induction module allows
the semantics of concepts to be built compositionally from those learned earlier (Ellis et al., 2020).

4.3 FEW-SHOT CONCEPT LEARNING Table 3: Few-shot concept learning with ANS.
Per. Syn. Sem. Test Accuracy (%)

Overall 1 2 3 4 5
α 1 maxpx, yq 64.08 70.91 81.98 70.79 50.56 40.66
β 1 minpx, yq 72.45 85.45 83.93 81.82 65.91 40.22
γ 2 px`yq{2 56.73 76.36 70.09 61.80 41.94 27.47
φ 2 xy´px`yq 54.40 76.36 68.81 41.35 56.04 22.09
avg. - - 61.92 77.27 76.20 63.94 53.61 32.61

We further conduct a preliminary study of few-
shot learning to demonstrate the ANS’s poten-
tial in learning new concepts with limited ex-
amples. As shown in Table 3, we define four
new concepts with common semantics. Their visual appearances are denoted by four unseen hand-
written symbols tα, β, γ, φu, and their syntax is decided by their precedence (i.e., 1 is for t`,´u
and 2 is for tˆ,˜u). We randomly sample a hundred examples from short to long expressions for
training each new concept and fine-tune the ANS model on the new training data. Table 3 shows the
test accuracy for each new concept. The proposed ANS model obtains a decent performance with an
average overall accuracy of 61.92%. Concepts with more complex semantics (tγ, φu) are generally
harder to learn than those with simpler semantics (tα, βu).

4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Acknowledgements. The authors thank Sirui Xie and Chi Zhang from UCLA CS Department for
helpful discussions. The work reported herein was supported by ONR N00014-19-1-2153, ONR
MURI N00014-16-1-2007, and DARPA XAI N66001-17-2-4029.

REFERENCES

Sebastian Bader, Artur S d’Avila Garcez, and P Hitzler. Extracting propositional rules from feed-
forward neural networks by means of binary decision diagrams. In 5th International Workshop
on Neural-Symbolic Learning and Reasoning, NeSy, 2009.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and
Aaron Courville. Systematic generalization: what is required and can it be learned? In Interna-
tional Conference on Learning Representations (ICLR), 2018.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In International Conference on Learning Represen-
tations (ICLR), 2017.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research, 20(1):973–978, 2019.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
tation. In International Conference on Learning Representations (ICLR), 2019.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Be-
tancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: a probabilistic
programming language. Grantee Submission, 76(1):1–32, 2017.

Thomas P Carpenter, Elizabeth Fennema, M Loef Franke, Linda Levi, and Susan B Empson. Chil-
dren’s mathematics. Cognitively Guided, 1999.

Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using neural net-
works. In Proceedings of the conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

Yixin Chen, Siyuan Huang, Tao Yuan, Siyuan Qi, Yixin Zhu, and Song-Chun Zhu. Holistic++ scene
understanding: Single-view 3d holistic scene parsing and human pose estimation with human-
object interaction and physical commonsense. In Proceedings of International Conference on
Computer Vision (ICCV), 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
reasoning by abductive learning. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proceedings of Interna-
tional Conference on Machine Learning (ICML), 2017.

Mark Edmonds, Feng Gao, Hangxin Liu, Xu Xie, Siyuan Qi, Brandon Rothrock, Yixin Zhu,
Ying Nian Wu, Hongjing Lu, and Song-Chun Zhu. A tale of two explanations: Enhancing human
trust by explaining robot behavior. Science Robotics, 4(37), 2019.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B Tenenbaum. Learning to infer
graphics programs from hand-drawn images. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 2018a.

5

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales,
Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Growing gen-
eralizable, interpretable knowledge with wake-sleep bayesian program learning. arXiv preprint
arXiv:2006.08381, 2020.

Kevin M Ellis, Lucas E Morales, Mathias Sablé-Meyer, Armando Solar Lezama, and Joshua B
Tenenbaum. Library learning for neurally-guided bayesian program induction. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), 2018b.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

Chaz Firestone and Brian J Scholl. Cognition does not affect perception: Evaluating the evidence
for “top-down” effects. Behavioral and Brain Sciences, 39, 2016.

Jerry A Fodor. The language of thought, volume 5. Harvard university press, 1975.

Jerry A Fodor, Zenon W Pylyshyn, et al. Connectionism and cognitive architecture: A critical
analysis. Cognition, 28(1-2):3–71, 1988.

Artur SD’Avila Garcez, Luis C Lamb, and Dov M Gabbay. Neural-symbolic cognitive reasoning.
Springer Science & Business Media, 2008.

Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: A language for flexible probabilistic inference.
In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS),
2018.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):
452–459, 2015.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and Diane Bouchacourt. Permutation equivari-
ant models for compositional generalization in language. In International Conference on Learning
Representations (ICLR), 2019.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013.

Ulf Grenander. General pattern theory-A mathematical study of regular structures. Clarendon Press,
1993.

Abhinav Gupta, Praveen Srinivasan, Jianbo Shi, and Larry S Davis. Understanding videos, con-
structing plots learning a visually grounded storyline model from annotated videos. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition. Signal Processing Magazine, 29(6):82–97, 2012.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006.

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact inference for discrete
probabilistic programs. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–
31, 2020.

Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu. Cooper-
ative holistic scene understanding: Unifying 3d object, layout, and camera pose estimation. In
Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2018a.

6

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Siyuan Huang, Siyuan Qi, Yixin Zhu, Yinxue Xiao, Yuanlu Xu, and Song-Chun Zhu. Holistic 3d
scene parsing and reconstruction from a single rgb image. In Proceedings of European Conference
on Computer Vision (ECCV), 2018b.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

baoxiong Jia, Yixin Chen, Siyuan Huang, Yixin Zhu, and Song-Chun Zhu. Lemma: A multi-view
dataset for learning multi-agent multi-task activities. In Proceedings of European Conference on
Computer Vision (ECCV), 2020.

Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang, Jenny Lin, Lap-Fai Yu, Demetri Terzopou-
los, and Song-Chun Zhu. Configurable 3d scene synthesis and 2d image rendering with per-pixel
ground truth using stochastic grammars. International Journal of Computer Vision (IJCV), 126
(9):920–941, 2018.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measuring compo-
sitional generalization: A comprehensive method on realistic data. In International Conference
on Learning Representations (ICLR), 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL), 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2012.

Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture: A
probabilistic programming language for scene perception. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In Proceedings of International Conference
on Machine Learning (ICML), 2018.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building ma-
chines that learn and think like people. Behavioral and Brain Sciences, 40, 2017.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations (ICLR), 2020.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Dennis Lee, Christian Szegedy, Markus N Rabe, Sarah M Loos, and Kshitij Bansal. Mathematical
reasoning in latent space. In International Conference on Learning Representations (ICLR), 2020.

Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu. Closed
loop neural-symbolic learning via integrating neural perception, grammar parsing, and symbolic
reasoning. In Proceedings of International Conference on Machine Learning (ICML), 2020a.

7

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Qing Li, Siyuan Huang, Yining Hong, and Song-Chun Zhu. A competence-aware curriculum for
visual concepts learning via question answering. Proceedings of European Conference on Com-
puter Vision (ECCV), 2020b.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. arXiv preprint arXiv:1611.00020,
2016.

Hangxin Liu, Yaofang Zhang, Wenwen Si, Xu Xie, Yixin Zhu, and Song-Chun Zhu. Interactive
robot knowledge patching using augmented reality. In Proceedings of International Conference
on Robotics and Automation (ICRA), 2018.

Hangxin Liu, Chi Zhang, Yixin Zhu, Chenfanfu Jiang, and Song-Chun Zhu. Mirroring without
overimitation: Learning functionally equivalent manipulation actions. In Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), 2019.

John W Lloyd. Foundations of logic programming. Springer Science & Business Media, 2012.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. arXiv preprint arXiv:2006.15055, 2020.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In
International Conference on Learning Representations (ICLR), 2018.

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629–679, 1994.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. In International Conference on Learning Rep-
resentations (ICLR), 2016.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. Specaugment: A simple data augmentation method for automatic speech recognition.
In Interspeech, 2019.

Giuseppe Peano. Arithmetices principia: Nova methodo exposita. Fratres Bocca, 1889.

Zenon W Pylyshyn. Computation and cognition: Towards a foundation for cognitive science, 1984.

Siyuan Qi, Baoxiong Jia, and Song-Chun Zhu. Generalized earley parser: Bridging symbolic gram-
mars and sequence data for future prediction. In Proceedings of International Conference on
Machine Learning (ICML), 2018a.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. Human-centric indoor
scene synthesis using stochastic grammar. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018b.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. In Proceedings of the conference on Empirical Methods in
Natural Language Processing (EMNLP), 2016.

Ron Sun. Integrating rules and connectionism for robust commonsense reasoning. John Wiley &
Sons, Inc., 1994.

Zhuowen Tu, Xiangrong Chen, Alan L Yuille, and Song-Chun Zhu. Image parsing: Unifying seg-
mentation, detection, and recognition. International Journal of Computer Vision (IJCV), 63(2):
113–140, 2005.

8

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Scan: Learning to classify images without labels. In Proceedings of European Confer-
ence on Computer Vision (ECCV), 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Sirui Xie, Xiaojian Ma, Peiyu Yu, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu. Halma:
Humanlike abstraction learning meets affordance in rapid problem solving. arXiv preprint
arXiv:2102.11344, 2021.

Xu Xie, Hangxin Liu, Mark Edmonds, Feng Gao, Siyuan Qi, Yixin Zhu, Brandon Rothrock, and
Song-Chun Zhu. Unsupervised learning of hierarchical models for hand-object interactions. In
Proceedings of International Conference on Robotics and Automation (ICRA), 2018.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representa-
tions (ICLR), 2020a.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020b.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understanding. In Proceedings
of Advances in Neural Information Processing Systems (NeurIPS), 2018.

Pengcheng Yin, Chunting Zhou, Junxian He, and Graham Neubig. Structvae: Tree-structured latent
variable models for semi-supervised semantic parsing. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL), 2018.

Tao Yuan, Hangxin Liu, Lifeng Fan, Zilong Zheng, Tao Gao, Yixin Zhu, and Song-Chun Zhu. Joint
inference of states, robot knowledge, and human (false-)beliefs. In Proceedings of International
Conference on Robotics and Automation (ICRA), 2020.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
and analogical visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019a.

Chi Zhang, Baoxiong Jia, Feng Gao, Yixin Zhu, Hongjing Lu, and Song-Chun Zhu. Learning per-
ceptual inference by contrasting. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2019b.

Wenhe Zhang, Chi Zhang, Yixin Zhu, and Song-Chun Zhu. Machine number sense: A dataset of
visual arithmetic problems for abstract and relational reasoning. In Proceedings of AAAI Confer-
ence on Artificial Intelligence (AAAI), 2020a.

Zhenliang Zhang, Yixin Zhu, and Song-Chun Zhu. Graph-based hierarchical knowledge represen-
tation for robot task transfer from virtual to physical world. In Proceedings of International
Conference on Intelligent Robots and Systems (IROS), 2020b.

Yibiao Zhao and Song-Chun Zhu. Image parsing with stochastic scene grammar. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), 2011.

Zhi-Hua Zhou. Abductive learning: towards bridging machine learning and logical reasoning. Sci-
ence China Information Sciences, 62:1–3, 2019.

Song-Chun Zhu, David Mumford, et al. A stochastic grammar of images. Foundations and Trends®
in Computer Graphics and Vision, 2(4):259–362, 2007.

9

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

A THE HINT DATASET

The data generation process follows the pipeline illustrated in Fig. S1. The syntax of the infix expres-
sions can be fully described by the context-free grammar depicted in Table S1. When generating the
HINT dataset, we ensure that (i) all handwritten images in the test set are unseen in training, (ii) at
most 1,000 samples are generated for each number of operators in expressions. In total, the training
and test set includes 11,170 and 48,910 samples, respectively. Subsets in the test set are balanced to
be 23%, 23%, 22%, 16%, and 16%. Fig. S2 visualizes several randomly selected examples from the
proposed HINT dataset.

Pre�x

In�x

HW

Results

×+328

(3+2)×8

40

−−53×52

5−3−5×2

0 1

2÷(5×4)

÷2×54 operator semantics
 +(a, b): a + b
 −(a, b): max(0, a - b)
 ×(a, b): a × b
 ÷(a, b): ceil(a ÷ b)

Figure S1: The data generation pipeline.

Table S1: Context-free grammar for arithmetic expressions.
G = (V, Σ, R, S)
V= {S, Expression, Term, Factor, Number}
Σ“t0, 1, 2, 3, 4, 5, 6, 7, 8, 9,`,´,ˆ,˜, p, qu.
S is the start symbol.
R = {SÑ Expression

ExpressionÑ Term | Expression + Term | Expression - Term
TermÑ Factor | Term ˆ Factor | Term ˜ Factor
FactorÑ (Expression) | Number
NumberÑ 0|1|2|3...|9 }

B A NEURAL-SYMBOLIC APPROACH

Below we first describe a general framework from a probabilistic perspective for learning the HINT
task as a neural-symbolic approach. This general framework implies a symbol system with combi-
natorial syntactic and semantic structures, initially introduced by (Fodor et al., 1988), as a feasi-
ble representation of the human mind. Such a symbol system provides a principled integration of
perception, syntax, and semantics. Guided by this general framework, we next provide a concrete
instantiation of such a neural-symbolic system and introduce a novel deduction-abduction strategy
to learn it with weak supervision; see Fig. 2 for overview.

B.1 A GENERAL FRAMEWORK

Given a neural-symbolic system, let x PΩx denote the input (images of handwritten expression in
the HINT dataset), s PΩs the symbolic expression, pt PΩt the parse tree of the symbolic expression,
et PΩe the execution trace, and y PΩy the output. During learning, px, yq are observed but ps, pt, etq
are latent. The likelihood of the observation px, yq marginalized over ps, pt, etq can be decomposed
as:

ppy|x; Θq“
ÿ

s,pt,et

pps, pt, et, y|x; Θq

“
ÿ

s,pt,et

pps|x; θpqpppt|s; θsqppet|pt; θlqppy|etq,
(1)

where (i) s|x denotes the process of perceiving symbols from raw signals, guided by the perceptual
model θp of learned concepts; (ii) pt|s denotes the process of parsing the symbolic expression into
a parse tree, guided by the syntactic model θs; (iii) et|pt denotes the process of reasoning over the
parse tree, guided by the semantic model θl; and (iv) y|et is a deterministic process: If the final
output of et equals to y, ppy|etq“ 1, otherwise 0.

S1

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Figure S2: Randomly selected examples from the training set and each subset of the test set.

From a maximum likelihood prospective, the learning objective is to maximize the observed-data
log likelihood Lpx, yq“ log ppy|xq. Take the derivative of L w.r.t. θp,

∇θpLpx, yq“∇θp log ppy|xq“
1

ppy|xq
∇θpppy|xq

“
ÿ

s,pt,et

pps, pt, et, y|x; Θq
ř

s1,pt1,et1 pps1, pt1, et1, y|x; Θq
∇θp log pps|x; θpq

“Es,pt,et„pps,pt,et|x,yqr∇θp log pps|x; θpqs.

(2)

Similarly, for θs, θl, we have
∇θsLpx, yq“Es,pt,et„pps,pt,et|x,yqr∇θs log pppt|s; θsqs (3)

∇θlLpx, yq“Es,pt,et„pps,pt,et|x,yqr∇θl log ppet|pt; θlqs. (4)

where pps, pt, et|x, yq is the posterior distribution of ps, pt, etq given px, yq. Since ppy|etq can only
be 0 or 1, pps, pt, et|x, yq can be rewritten as:

pps, pt, et|x, yq“
pps, pt, et, y|x; Θq

ř

s1,pt1,et1 pps1, pt1, et1, y|x; Θq
“

#

0, for s, pt, et RQ
pps,pt,et|x;Θq

ř

s1,pt1,et1PQ pps1,pt1,et1|x;Θq , for s, pt, et PQ

(5)
where Q“tps, pt, etq : ppy|etq“ 1, s PΩs, pt PΩt, et PΩeu is the set of ps, pt, etq that generates y.
Usually, Q is a very small subset of the entire space of ps, pt, etq, i.e., QĎΩsˆΩtˆΩe, where ˆ
denotes the Cartesian product.

Since taking expectation w.r.t. this posterior distribution is intractable, we use Monte Carlo sam-
pling to approximate it. Therefore, the learning procedure for an example px, yq can be depicted as
following:

1. sample ŝ, p̂t, êt„ pps, pt, et|x, yq;
2. use px, ŝq to update the perception model (θp);
3. use pŝ, p̂tq to update the parsing model (θs);
4. use pp̂t, êtq to update the reasoning model (θl).

B.2 ARITHMETIC NEURAL-SYMBOLIC (ANS) MODEL

The general framework of the desired neural-symbolic system described above is agnostic to the
choice of functions and algorithms. Below we delineate a learnable implementation, named ANS,
capable of learning generalizable concepts in arithmetic on the proposed HINT dataset.

B.2.1 PERCEPTION: NEURAL NETWORK

The role of the perception module is to map a handwritten expression x into a symbolic expression
s. Since disentangling visual symbols from handwritten expressions is trivial in this domain2, we

2Perfect disentanglement can be achieved by state-of-the-art unsupervised disentanglement learning meth-
ods (Burgess et al., 2019; Locatello et al., 2020)

S2

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

assume the input as a sequence of handwritten images, where each image contains one symbol. We
adopt a standard ResNet-18 (He et al., 2016) as the perception module to map each handwritten
image into a probability distribution over the concept space Σ. Formally,

pps|x; θpq“
ź

i

ppwi|xi; θpq“
ź

i

softmaxpφpwi, xi; θpqq, (6)

where φps, x; θpq is a scoring function parameterized by a Neural Network (NN) with parameters θp.
Since learning such an NN from scratch is prohibitively challenging, the ResNet-18 is pre-trained
unsupervisedly (Van Gansbeke et al., 2020) on unlabeled handwritten images.

B.2.2 SYNTAX: DEPENDENCY PARSING

In our dependency parser, a state c“pα, β,Aq consists of a stack α, a buffer β, and a set of depen-
dency arcs A. The initial state for a sequence s“w0w1...wn is α“rRoots, β“rw0w1...wns, A“
H. A state is regarded as terminal if the buffer is empty and the stack only contains the node Root.
The parse tree can be derived from the dependency arcs A. Let αi denote the i-th top element on
the stack, and βi the i-th element on the buffer. The parser defines three types of transitions between
states:

• LEFT-ARC: add an arc α1Ñα2 to A and remove α2 from the stack α. Precondition: |α| ě 2.
• RIGHT-ARC: add an arc α2Ñα1 to A and remove α1 from the stack α. Precondition: |α| ě 2.
• SHIFT: move β1 from the buffer β to the stack α. Precondition: |β| ě 1.

The goal of the parser is to predict a transition sequence from an initial state to a terminal state. As the
parser is greedy, it attempts to predict one transition from T “tLEFT-ARC,RIGHT-ARC, SHIFTu at
a time, based on the current state c“pα, β,Aq. The features for a state c contains following three
elements: (i) The top three words on the stack and buffer: αi, βi, i“ 1, 2, 3; (ii) The first and second
leftmost/rightmost children of the top two words on the stack: lc1pαiq, rc1pαiq, lc2pαiq, rc2pαiq, i“
1, 2; (iii) The leftmost of leftmost/rightmost of rightmost children of the top two words on the stack:
lc1plc1pαiqq, rc1prc1pαiqq, i“ 1, 2. We use a special Null token for non-existent elements. Each
element in the state representation is embedded to a d-dimensional vector e PRd, and the full em-
bedding matrix is denoted as E PR|Σ|ˆd, where Σ is the concept space. The embedding vectors for
all elements in the state are concatenated as its representation: c“re1 e2...ens PR

nd. Given the state
representation, we adopt a two-layer feed-forward NN to predict a transition.

h“RELUpW1c`b1q (7)
p“softmaxpW2h`b2q, (8)

where W1 PR
dhˆnd, b1 PR

dh ,W2 PR
|T |ˆdh , b2 PR

|T | are the weights and bias vectors in the NN
and dh is the dimension of the hidden layer.

B.2.3 SEMANTICS: PROGRAM SYNTHESIS

The semantics of concepts in HINT, including digits, operators, and parentheses, are all represented
as programs composed from these primitives L“t0,inc,dec,if,Yu. During inference, these
programs are used for reasoning to obtain the results. The learning for a concept c is to find a
program ρc to maximize the following objective:

ρc“ arg max
ρ

ppρ|Dc, Lq 9 pDc|ρq ppρ|Lq, (9)

where Dc denotes the input-output pairs of the concept c for program induction, ppDc|ρq the like-
lihood of the program ρ explaining Dc, and ppρ|Lq the prior of ρ under the library L, which de-
fines a generative model over programs. The maximization in Eq. (9) is achieved by a stochastic
search process guided by a neural network, which is trained to approximate the posterior distribu-
tion ppρ|Dc, Lq.

B.2.4 LEARNING BY DEDUCTION-ABDUCTION

In Appendix B.1, we derive a general learning procedure for such a neural-symbolic system. The
key is to perform efficient sampling from the posterior distribution pps, pt, et|x, yq. Algorithm 1
provides an overview of the proposed learning algorithm. In short, we generalize the back-search

S3

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

algorithm in (Li et al., 2020a) to a deduction-abduction strategy to enable efficient sampling from
the posterior distribution of perception, syntax, and semantics.

Deduction For a given example px, yq, we first perform greedy deduction from x to obtain a
candidate solution of a compound tree ct“px, ŝ, p̂t, êtq. This process is likely to produce a wrong
result, thus requiring a separate abduction process to further correct it, detailed below.

Abduction To find a revised solution ct˚ that can reach the goal y, we search the neighbors of ct in
a top-down manner by performing abduction over perception (s), syntax (pt), and semantics (et), as
detailed in Algorithm 2 and illustrated in Fig. 2. Our abduction strategy generalizes the perception-
only, one-step back-search algorithm described in Li et al. 2020a to all three levels. The SOLVE
function and the priority used in the top-down search are similarly to the ones in Li et al. 2020a. The
abduction can also be extended to multiple steps, but we only use one step for lower computation
overhead. The above deduction-abduction strategy likely behaves as a Metropolis-Hastings sampler
for the posterior distribution (Li et al., 2020a).

Fig. S3 visualizes a concrete example illustrating the proposed deduction-abduction strategy in ANS.

Algorithm 1: Learning by Deduction-
Abduction
1: Input: Training set D“tpxi, yiq : i“ 1, 2, ..., Nu

2: Initial Module: perception θp0qp , syntax θp0qs ,
semantics θp0ql

3: for tÐ 0 to T do
4: Buffer B“∅
5: for px, yq PD do
6: ct“DEDUCEpx, θ

ptq
p , θ

ptq
s , θ

ptq
l q

7: ct˚“ABDUCEpct, yq
8: B“BYtct˚u
9: end for

10: θ
pt`1q
p , θ

pt`1q
s , θ

pt`1q
l “ learnpB, θptqp , θ

ptq
s , θ

ptq
l q

11: end for
12: return θpT qp , θ

pT q
s , θ

pT q
l

1: function DEDUCE(x, θp, θs, θl)
2: sample

ŝ„ pps|x; θpq, p̂t„ pppt|ŝ; θsq, êt“ fpp̂t; θlq
3: return ct“px, ŝ, p̂t, êtq
4: end function

Algorithm 2: Abduction
1: function ABDUCE(ct, y)
2: Q=PriorityQueue()
3: Q.push(rootpctq, y, 1.0)
4: while A, yA, p = Q.pop() do
5: A“pi, w, v, arcsq Ź (image, symbol, value,

arcs)
6: if A.v““ yA then
7: return A
8: end if
9: Ź Abduce perception

10: for w1 PΣ do
11: A1“ApwÑw1q
12: if A1.v““ yA then
13: Q.push(A1, yA, ppA1q)
14: end if
15: end for
16: Ź Abduce syntax
17: for arc P arcs do
18: A1“ rotatepA, arcq
19: if A1.v““ yA then
20: Q.push(A1, yA, ppA1q)
21: end if
22: end for
23: Ź Abduce semantics
24: A1“ApvÑ yAq
25: Q.push(A1, yA, ppA1q)
26: Ź Top-down search
27: for B P childrenpAq do
28: yB “ SOLVEpB,A, yA|θlpA.wqq
29: Q.push(B, yB , ppBq)
30: end for
31: end while
32: end function

C EXPERIMENTAL SETUP

Models Both the ResNet-18 and the dependency parser in the proposed ANS model are trained
by an Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10´4 and a batch size of 512.
The ResNet-18 is pre-trained unsupervisedly (Van Gansbeke et al., 2020) on unlabeled handwritten
images extracted from the training set. In the dependency parser, the token embeddings have a

S4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

1

Priority Queue

+ 11 𝑎$, 𝑎& , 21, 1.0

Pop

Push

21+ 11

3 3 × 8
𝑎$ 𝑎&

Abduce perception: None
Abduce syntax: None
Abduce semantics:

+ 21 𝑎$, 𝑎& , 21, 𝑝$.
Top-down search:

3 3 ∅ , 13, 𝑝&
× 8 𝑎0, 𝑎1 , 18, 𝑝0

+ 11

3 3 × 8

4 4 2 2

𝑎$ 𝑎&
21

𝑝&

𝑝$

𝑝0

𝑝1 𝑝3

𝑎0 𝑎1

Priority Queue

(× 8 𝑎0, 𝑎1), 18, 𝑝0
(+ 21 𝑎$, 𝑎&), 21, 𝑝$.

(3 3 ∅), 13, 𝑝&

Pop
𝑝$

𝑝& 𝑝0

× 8

4 4 2 2

𝑝0

𝑝1 𝑝3

𝑎0 𝑎1

Abduce perception: None
Abduce syntax: None
Abduce semantics:

× 18 𝑎0, 𝑎1 , 18, 𝑝0.
Top-down search:

4 4 ∅ , 9, 𝑝1

18

Priority Queue

(4 4 ∅), 9, 𝑝1
(× 18 𝑎0, 𝑎1), 18, 𝑝0
(+ 21 𝑎$, 𝑎&), 21, 𝑝$.

(3 3 ∅), 13, 𝑝&

Pop

4 4
𝑝1

Abduce perception:
9 9 ∅ , 9, 𝑝1.

Abduce syntax: None
Abduce semantics:

4 9 ∅ , 9, 𝑝1..
Top-down search: None

Push 9

Priority Queue

(9 9 ∅), 9, 𝑝1.

(4 9 ∅), 9, 𝑝1..

(× 18 𝑎0, 𝑎1), 18, 𝑝0
(+ 21 𝑎$, 𝑎&), 21, 𝑝$.

(3 3 ∅), 13, 𝑝&

Pop

(9 9 ∅), 9, 𝑝1.

D
ed
uc
tio
n

A
bd
uc
tio
n

Push

Figure S3: An illustration of the deduction-abduction strategy in ANS. Given a handwritten ex-
pression, the system first performs a greedy deduction to propose an initial solution, which generates
a wrong result. In abduction, the root node, paired with the ground-truth result, is first pushed to the
priority queue. The abduction over perception, syntax, and semantics is performed on the popped
node to generate possible revisions. A top-down search is also applied to propagate the expected
value to its children. All possible revisions are then pushed into the priority queue. This process is
repeated until we find the most likely revision for the initial solution.

dimension of 50, and the hidden dimension of the transition classifier is 200. The program synthesis
module is adapted from DreamCoder3. The three modules of ANS are jointly trained.

For end-to-end NN baselines, the task of HINT is formulated as a sequence-to-sequence problem:
The input is an expression sequence, and the output is a sequence of digits, which is then converted
to an integer as the predicted result. We test two popular seq2seq models: (1) BiGRU: the encoder
is a bi-directional GRU (Chung et al., 2014) with three layers, and the decoder is a one-layer GRU,
the token embeddings have a dimension of 128, and the hidden dimensions for the encoder and
decoder are 128 and 256, respectively; (2) TRAN: a Transformer model (Vaswani et al., 2017) with
three encoder-layers, three decoder-layers, and four attention heads for each layer, and the hidden
dimension is 128. Before being fed into these models, the handwritten expressions are processed by
the same ResNet-18 used in ANS. We test models with varied numbers of layers and report ones
with the best results.

Training All models are trained for 100 epochs. To speed up the convergence, the training is
guided by a simple curriculum from short expressions to long ones:

1. Epoch 0 „ 20: max length = 3
2. Epoch 20 „ 40: max length = 7
3. Epoch 40 „ 60: max length = 11
4. Epoch 60 „ 80: max length = 15
5. Epoch 80 „ 100: max length =8

Evaluation Metric We evaluate the models with the accuracy of final results. Note that a predicted
result is considered correct when it exactly equals to the ground-truth.

Qualitative Examples Fig. S4 shows several examples of the ANS predictions on each test subset.

3https://github.com/ellisk42/ec

S5

https://github.com/ellisk42/ec

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Test subset 1

Test subset 2

Test subset 3

Test subset 4

Test subset 5

GT: (7+9/2)/3/8 = 1 PD: (7+9/2)/3/8 = 1 GT: 2/5-(0-1/6)/(8+2) = 1 PD: 2/5-(0-1/6(/(8+2) = 1

GT: (3-1-(3-2))/(0+5) = 1 PD: (3-1-(3-2()/(0+5(= 1 GT: 3*(4-0+(6+(0*6-9))-6) = 12 PD: 3*(4-0+(6+(0*6-9))-6) = 24

GT: 9*(9+8)*3-9/8 = 457 PD: 9*(9+8)*3-9/8 = 457 GT: (8*7*6+(3-0)/2*8)*7 = 2464 PD: (8*7*6+(3-0)/2*8)*7 = 448

GT: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)+(9+3)-0) = 2 PD: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)/(9+3)-0) = 24

GT: (8/5+(1+5))*(4+5*0)-(7/(9*8)+1-3/(7+0)) = 31 PD: (8/5+(1+5)(*(4+5*0)-(7/(9*8)+1-3/(7+0() = 31

Figure S4: Examples of ANS predictions on the test set. “GT” and “PD” denote “ground-truth”
and “prediction,” respectively. Each node in the solution tree is a tuple of (symbol, value). Please
check the attached codebase for more examples.

D RELATED WORK

D.1 THREE LEVELS OF CONCEPT LEARNING

The surge of deep neural networks (LeCun et al., 2015) in the last decade has significantly advanced
the accuracy of perception learning from raw signals across multiple modalities, such as image

S6

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

classification from image pixels (He et al., 2016; Krizhevsky et al., 2012) and automatic speech
recognition from audio waveforms (Park et al., 2019; Hinton et al., 2012; Graves et al., 2013).

The goal of syntax analysis is to understand the compositional and recursive structures in various
tasks, such as natural language parsing (Chen & Manning, 2014; Kitaev & Klein, 2018), image and
video parsing (Tu et al., 2005; Zhu et al., 2007; Zhao & Zhu, 2011; Gupta et al., 2009; Qi et al.,
2018a; Jia et al., 2020), scene understanding (Huang et al., 2018b;a; Qi et al., 2018b; Jiang et al.,
2018; Chen et al., 2019; Yuan et al., 2020), task planning (Xie et al., 2018; Liu et al., 2018; Edmonds
et al., 2019; Liu et al., 2019; Zhang et al., 2020b), and abstract reasoning (Zhang et al., 2019a;b;
2020a). There exist two major structural types: constituency structures (Kitaev & Klein, 2018) and
dependency structures (Chen & Manning, 2014). Constituency structures use phrase structure gram-
mar to organize input tokens into nested constituents, whereas dependency structures show which
tokens depend on which other tokens.

Semantics of concepts essentially describe its causal effect. There are two primary semantic rep-
resentations in symbolic reasoning. The first is logic (Lloyd, 2012; Manhaeve et al., 2018), which
regards the semantic learning as inductive logic programming (Muggleton & De Raedt, 1994; Evans
& Grefenstette, 2018)—a general framework to induce first-order logic theory from examples. The
other representation is program, which treats the semantic learning as inductive program synthesis
(Kulkarni et al., 2015; Lake et al., 2015; Balog et al., 2017; Devlin et al., 2017; Ellis et al., 2018a;b).
Recently, Ellis et al. (2020) release a neural-guided program induction system, DreamCoder, which
can efficiently discover interpretable, reusable, and generalizable knowledge across a wide range of
domains.

However, aforementioned literature tackles only one or two levels of concept learning and usually
requires direct supervision on model outputs. In contrast, in this paper we offer a more holistic
perspective that addresses all three levels of concept learning, i.e., perception, syntax, and semantics,
taking one step closer to realize a versatile mechanism of concept learning under weak supervision.
The design of three-level concept learning echoes a newly proposed challenge, HALMA, by Xie
et al. (2021), but with a focus on perception instead of interaction with the environments.

D.2 SYSTEMATIC GENERALIZATION

The central question in systematic generalization is: How well can a learning agent perform in un-
seen scenarios given limited exposure to the underlying configurations (Grenander, 1993)? This
question is also connected to the Language of Thought Hypothesis (Fodor, 1975): The systematic-
ity, productivity, and inferential coherence characterize compositional generalization of concepts
(Lake et al., 2015). As a prevailing property of human cognition, systematicity poses a central ar-
gument against connectionist models (Fodor et al., 1988). Recently, there have been several works
to explore the systematic generalization of deep neural networks in different tasks (Lake & Baroni,
2018; Bahdanau et al., 2018; Keysers et al., 2019; Gordon et al., 2019; Xie et al., 2021). By going
beyond traditional i.i.d. train/test split, the proposed HINT benchmark well-captures the character-
istics of systematic generalization across different aspects of concepts w.r.t. perception, syntax, and
semantics.

D.3 NEURAL-SYMBOLIC INTEGRATION

Researchers have proposed to combine statistical learning and symbolic reasoning, with pioneer
efforts devoted to different directions, including representation learning and reasoning (Sun, 1994;
Garcez et al., 2008; Manhaeve et al., 2018), abductive learning (Li et al., 2020a; Dai et al., 2019;
Zhou, 2019), knowledge abstraction (Hinton et al., 2006; Bader et al., 2009), etc. There also have
been recent works on the application of neural-symbolic methods, such as neural-symbolic visual
reasoning and program synthesis (Yi et al., 2018; Mao et al., 2018; Li et al., 2020b; Parisotto et al.,
2016), semantic parsing (Liang et al., 2016; Yin et al., 2018), and math word problems (Lample
& Charton, 2020; Lee et al., 2020). Current neural-symbolic approaches often require a perfect
domain-specific language, including both the syntax and semantics of the targeted domain. In com-
parison, the proposed model relaxes such a strict requirement and enables the learning of syntax and
semantics.

S7

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

E DISCUSSION: CONTRIBUTIONS AND LIMITATIONS

In this paper, we take inspiration from how humans learn arithmetic and present a new challenge
for the machine learning community, HINT, which serves as a minimal yet complete benchmark
towards studying systematic generalization of concepts w.r.t. perception, syntax, and semantics. Ad-
ditionally, we propose a neural-symbolic system, Arithmetic Neural-Symbolic (ANS), to approach
this challenge. ANS integrates recent efforts from the disciplines of neural networks, grammar pars-
ing, and program synthesis. One potential future work is to extend our model to other domains and
applications.

Extending to other domains. To extend our model to other domains with varieties of semantics,
such as visual reasoning (Johnson et al., 2017; Hudson & Manning, 2019) and question answer-
ing (Rajpurkar et al., 2016), we may consider to inject contexts into the semantics of concepts and
capture their inherent stochastic nature with probabilistic programs (Ghahramani, 2015; Carpenter
et al., 2017; Ge et al., 2018; Bingham et al., 2019; Holtzen et al., 2020).

S8

	Introduction
	The
	 Model
	Results and Discussions
	NeSy v.s. E2E NeuralNets
	Ablation Study
	Few-shot Concept Learning

	The Hint Dataset
	A Neural-Symbolic Approach
	A General Framework
	 Model
	Perception:
	Syntax: Dependency Parsing
	Semantics: Program Synthesis
	Learning by Deduction-Abduction

	Experimental Setup
	Related Work
	Three Levels of Concept Learning
	Systematic Generalization
	Neural-Symbolic Integration

	Discussion: Contributions and Limitations

