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ABSTRACT

In this article we consider important developments in artificial intelligence within
automated and interactive theorem provers (ATP/ITP). Our focus is to describe and
analyze key challenges for interactive theorem provers in mainstream mathemati-
cal practice. Our broader research program is motivated by studying the functions
of visual internal and external representations in human mathematicians and the
role of epistemic emotions. These aspects remain gorges to bridge in developing
ITPs. But by seeing ITPs as augmenting the human mathematician, we stand to
gain the best of two epistemic practices in the form of a hybrid — a centaur.

1 INTRODUCTION

Computers are ubiquitous in mathematical practice, yet the prospect of profound epistemological
revolutions of mathematics have not yet materialized. It has been foreseen, though, often either in
the form of epistemic and creative autonomy granted to automated theorem provers or in the form
of outsourcing lengthy computations and relying on the results as a posteriori epistemic claims.

One productive way of framing this debate can be found in the sociologist of mathematics and AI
Donald MacKenzie, who distinguished between different and largely disjoint domains: In the AI
research community, MacKenzie suggested, “automatic theorem proving [was pursued] where the
aim is to simulate human processes of deduction”. This contrasted with the efforts in mathematical
logic which pursued “automatic theorem proving where any resemblance to how humans deduce is
considered to be irrelevant” and with the efforts in computer science for the verification of software
and hardware using “interactive theorem proving, where the proof is directly guided by a human
being” (MacKenzie, 1995). MacKenzie’s typology is already 25 years old, but in the following we
use his distinctions to gauge and discuss challenges facing the broader acceptance of (interactive)
theorem provers in mathematical research. For this, we identify the three strands with ‘artificial’,
‘autonomous’ and ‘augmented’ mathematical theorem proving, respectively, and we return to this in
the conclusion.

1.1 BACKGROUND

Recent advances in AI research and a new wave of computer savvy mathematicians have renewed
the discussions over the role of digital augmentation of the human mathematical process. Machine
learning agents have progressed to the point where they can suggest statements for mathematical
inquiry (Raayoni et al., 2021), and efforts are underway to formalize large parts of undergraduate
mathematics in Lean (Buzzard, 2020) or Isabelle/HOL (Koutsoukou-Argyraki, 2020) and actively
use such proof assistants in teaching (Buzzard, 2019). This trend has also not escaped the broader
professional press, and hopes, visions and ambitions are high (Ornes, 2020).
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Yet, the history of AI urges caution when the hype is at its height. Famously, after constructing their
General Problem Solver (GPS) — indeed one of the first breakthroughs in automating mathematical
and logical thought — Herbert Simon and Allen Newell predicted in 1958 that “within ten years
a digital computer will discover and prove an important mathematical theorem” (Simon & Newell,
1958). In fact, it took until the Appel-Haken proof of the Four-Colour Theorem announced in 1976
(Appel & Haken, 1976) for computers to really enter essentially into a mathematical proof, and this
was in the form of checking a large number of cases with the construction of the proof done by
humans. And the first discovery of an ‘interesting’ mathematical result obtained by computers is
perhaps the proof of the Robbins Conjecture in 1997 (McCune, 1997). So the initial optimism was
somewhat dampened — both by the delay of decades and by the contested (if not outright scep-
tic) reception of new computer-assisted mathematical knowledge claims: The Appel-Haken proof is
still sometimes considered ‘ugly’ (Montaño, 2014; 2012) and William McCune’s automated solution
to the Robbins problem was immediately transformed into more ‘accessible’ (anthropomorphised)
form by human mathematicians. Thus, both these famous milestones in computer-assisted mathe-
matics have come to point to a reluctance among human mathematicians in relying on computers
and now form a barrier to be overcome in communicating proofs.

In what could be called the next phase of computerized mathematics, with the advent of so-called
‘experimental mathematics’ in the 1990s, proponents were arguing that mathematics could rely on
computers for both heuristic, exploratory and demonstrative functions (Sørensen, 2008; Borwein,
2012). Jon Borwein and David Bailey presented their arguments for drawing inspiration from digital
experiments in mathematics and using these to construct human proofs (Borwein & Bailey, 2004).
And at the same time a debate arose around Doron Zeilberger, who would controversially list his
computer as a co-author on papers, proving identities by the Wilf-Zeilberger algorithm (Zeilberger,
1994; Ekhad & Zeilberger, 1996; Petkovšek et al., 1997). In a response to Zeilberger, George An-
drews defined the gold standard: “Until Zeilberger can provide identities which are (1) discovered
by his computer, (2) important to some mathematical work external to pure identity tracking, and
(3) too complicated to allow an actual proof using his algorithm, then he has produced exactly no
evidence that his Brave New World is on its way” (Andrews, 1994, p.17).

In the following, we combine empirical evidence in the form of qualitative interviews with work-
ing mathematicians with a conceptual analysis and overview of features of interactive theorem
provers to point to some key philosophical issues about mathematical practice that lie at the nexus
of a broader acceptance of interactive theorem provers into ‘mainstream’ mathematical practice
(Sørensen, 2012).

1.2 INSIGHTS FROM WORKING MATHEMATICIANS

The emerging field of philosophy of mathematical practice makes use of empirical methods to get
access to the mathematical research process Löwe & Kerkhove (2018). In semi-structured inter-
views with research mathematicians in 2012, the respondents were asked about the practices of
developing and solving new mathematical research problems (Misfeldt & Johansen, 2015; Johansen
& Misfeldt, 2014). These interviews revealed the surprisingly intricacy of problem choice. Thus, re-
spondents would try to balance three criteria: 1) personal interest to the researcher, 2) perceived level
of difficulty as non-trivial but also solvable, and 3) interest among peers in the research community
(Misfeldt & Johansen, 2015).

The first of these criteria does not warrant much more attention except to say that choices need to be
made about which problems to develop and attack. The second criterion involves metacognition in
the sense of the ability to assess the limits of your own cognitive powers and the ability to reliably
rank these with those of other mathematicians and approaches. The respondents would often rely on
professional experience and their assessment of where they could gain a ‘head start’ by drawing on
their work with similar problems or similar promising methods. The third criterion was perceived
as being both of utmost importance and difficulty, as essentially it focuses on carving a niche for
your work among your intended audience (Andersen et al., 2019; Ashton, 2020). Therefore, recog-
nizability is a powerful value in problem choice, as peers would have to be able to identify and learn
from your work. Thus, mathematical practice is a social one that also relies on more informal ways
of communication for its practitioners to follow and calibrate with the interests of their peers, for
instance by attending conferences and workshops, by collaborating and by using a shared pool of
techniques and visualizations to aid understanding and generate new high-level concepts.
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These informal and social aspects of human mathematical practice pose a real challenge to any
attempt to automate mathematics. Crucial aspects of mathematical practice (such as the development
and choice of suitable problems as well as the development of the representations and concepts
needed to attack these problems and communicate solutions in a meaningful way) seem to lie beyond
the scope of formal and mechanical reasoning. This goes some way to explain the limits to purely
formal approaches such as those exposed by the GPS and the Robbins Conjecture, above. However,
these limits can be approached in different ways; one can try to overcome them, or one can accept
them and work within them as boundary conditions. In this short paper we will try the last approach
and explore how humans and computers can work together in a constructive way (or rather: how
human mathematical practice can incorporate computers as a new and powerful tool).

1.3 INTERACTIVE THEOREM PROVERS

Based on the example of the GPS, a number of features are recurring in automated and interactive
theorem provers: First, the computer software works towards a “goal” (hypothesis) which is de-
scribed by a human mathematician and encoded in something like human-readable form. Various
systems employ different formats and syntax, and learning curves for the novice mathematician can
be more or less steep. The ITP can then proceed to try to break the goal into subgoals, the realiza-
tion of which would inform a proof of the overarching goal. This process can draw on libraries of
strategies, and it can include supervised guidance by a human mathematician. The idea is to provide
a break-down of the main goal into sub-goals such that a proof of each subgoal would lead to a
proof of the main objective. Some of the subgoals may have ‘easy’ proofs that can be filled either
through a variety of mechanisms called ‘resolution’ or through e.g. library look-ups of theorems,
formula reductions or the like. Thus, the ‘interactive’ part of ITPs mainly involves the human user
providing goals and heuristic strategies to the computer, which in turn suggests possible sub-goals
to be explored either by human, by computer, or by a combination.

Automated mathematics has already existed for decades, with Automath (Bruijn, 1970) being one of
the first more generally viable systems. However, the real change has come with the introduction of
interactive theorem provers with a machine-learning based component and suited for ordinary desk-
top research. These components are based on techniques used in language processing, like syntactic
trees (Yang & Deng, 2019; Purgał et al., 2021), and in the form of a type of neural networks called
“Transformers” (Vaswani et al., 2017). Transformers — or more precisely attention-based neural
network architectures (Lindsay, 2020) — are for example used for translating and composing syntax;
a well-known non-mathematical application of transformers is GPT-3 (Brown et al., 2020). But they
also have shown effective in mathematics; Polu & Sutskever (2020) used GPT-f to discover a short
proof, which was added to the Metamath library.

So what can we expect of future developments in ITPs? In addition to suggesting tactics, a new
generation of theorem provers might even discover theorems, for example by employing “self-play”.
“Self-play” — a notion already mentioned at the AITP Conference 2020 — refers to an AI finding
rules in a world by exploration (OpenAI et al., 2019). Thus, self-play adds a new paradigm to the
automation of human cognition: Gopnik (2020) argues that human childhood is characterised by the
“exploration” stage, while adults use “exploitation”, which is goal-directed. Observing how children
learn as a means to obtain general artificial intelligence was already suggested by Alan Turing. And
whereas we have suspected for decades that embodiment plays a role in human mathematical thought
(Lakoff & Núñez, 2000), by combining our knowledge of interactive computers proving theorems
with new discoveries about computers searching out theorems in an exploratory way, could provide
bridges to ‘mainstream’ mathematical practice.

1.4 WAITING FOR THE “ATP/ITP REVOLUTION”?

Considering the potential of current ITPs, one could expect a large interest from the mathematical
community. This has, however, not really been the case. When asking mathematicians why they
do not use theorem provers, Bundy (2011) was frequently confronted with the following reasons:
1) Logic proofs are too detailed and long, 2) Provers are insufficiently powerful, 3) Provers are
too tedious to use, 4) Provers are hard to use, and 5) Why give up the fun of proving? In order
to contribute to the development of more human-friendly ITPs, we will address the most of these
objections in our research program.
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1.4.1 OBJECTION: TOO DETAILED, TEDIOUS AND HARD TO USE

Due in large part to probabilistic data analysis and computer vision applications, the field of AI has
grown spectacularly over the past decades. Yet, mathematical problem solving by AIs has mainly
been non-visual and rigid and has thus not reaped huge benefits from this renaissance. However,
there are strong indicators that internal (visual thinking, mental simulation) and external visual pre-
sentations (diagrams) play important roles for human mathematicians (Anderson et al., 2015; Jo-
hansen, 2014). For instance, in an interview at the Heidelberg Laureate Forum, Fields Medal winner
Terence Tao described vividly how he solved a problem by mentally navigating through space.

Although the role of spatial skills has enjoyed a lot of attention in mathematical education research
(Hegarty & Kozhevnikov, 1999; Gilligan-Lee et al., 2021), the study of visual representations in
mathematics experts is more limited (Cipora et al., 2016; Butterworth, 2006; Stylianou & Silver,
2004; Ma’ayan et al., 2020; Amalric & Dehaene, 2016; Giaquinto, 2007). This is perhaps correlated
with the exclusion of graphical or visual arguments by the predominant disciplinary standards of
the 20th century beginning with Hilbert’s attempts to stop incorrect reasoning inferred from figures
(Davis & Hersh, 1981). As emphasised by Whiteley (2010), however, this absence of visual elements
in publications does not reflect how important visualization is in mathematics.

These observations show a discrepancy between human and AI mathematics. Human mathemati-
cians switch between several representations, while theorem provers use a single representation
(Purgał et al., 2021), which still need improvement (Kaliszyk & Rabe, 2020). To gauge the depth of
this gap, our research program seeks to quantify the use of internal and external visual representa-
tions by human mathematicians (e.g. visual thinking and conceptual diagrams) and to qualitatively
describe their functions (see Figure 1). This information will enable AIs to assist human mathemati-
cians and make ITPs more intuitive at producing visual representations, which could even be formal.
The program “Penrose” (Ye et al., 2020) can for example produce figures from any mathematical
texts. An even more formal example in that direction is perhaps Globular (Bar et al., 2016), produc-
ing graphical proofs in category theory. This newly acquired information about visual and spatial
thinking (e.g. mental imagery, mental simulation, etc) by mathematicians should then be integrated
with symbolic views on mathematical reasoning.

Figure 1: Possible role of ITP/ATP in human mathematical understanding in relation to external
representations (in white) such as diagrams, internal representations including visual thinking (in
green) and epistemic emotions, addressed by our research program. Also depicted is the relation of
AI to mathematical understanding, and the barrier of meaning in AI.
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1.4.2 OBJECTION: WHY GIVE UP THE FUN?

The second part of our research program focuses on how mathematicians experience practicing
mathematics by investigating the epistemic emotions (Muis et al., 2015; Pekrun et al., 2016) ‘cu-
riosity’, ‘confusion’ and ‘surprise’. We predict that mathematicians are particularly resilient to
confusion (Jaber & Hammer, 2015). Information about these epistemic emotions in mathematical
practice might elucidate what it means to “understand” mathematics and how much joy the process
actually brings to mathematicians (Satyam, 2020).

When thinking of emotions in mathematics (Borovik, 2017), we realise that understanding is also a
subjective experience. As such, understanding seems a major limitation for AI. In cognitive psychol-
ogy for example, neural networks were originally introduced to model human cognition (Goebel,
1991). These models are so powerful that many researchers in cognitive computational neuroscience
now employ deep learning such as image recognition as a ‘realistic’ way to study human processes
(Storrs & Kriegeskorte, 2020). However, the use of deep learning ultimately leads to the question
what it means to “understand a neural process via a computational model” (Saxe et al., 2020). A
human observer is always needed to assign meaning. An ITP could prove theorems, or perhaps even
discover theorems, but in order to understand such AI mathematics, a human mathematician seems
necessary in the loop.

This illustrates that the introduction of AI invariably results in existential questions concerning
meaning and understanding. And we concur with Mitchell (2020) in concluding that interdisci-
plinary collaboration is important to overcome the barrier of meaning in AI.

1.5 CONCLUSION

To summarise, our research program into visual representations and epistemic emotions of profes-
sional mathematicians will not only contribute to the collaboratively-derived research agenda of
challenges in mathematical cognition (Alcock et al., 2016), but also inform the design of ITPs to
make them more human-friendly, joining mathematics automation usability efforts like Lean For-
ward (Doorn et al., 2020) and SErAPIS (Stathopoulos et al., 2020). And, rather than introducing
artificial or autonomous mathematical entities, through augmenting the human mathematician like
the mythological centaur, this might produce a mathematician — neither computer nor human, but
more powerful than each.
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