
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

TRAINING A FIRST-ORDER THEOREM PROVER FROM
SYNTHETIC DATA

Vlad Firoiu
DeepMind
vladfi@google.com

Eser Aygün
DeepMind
eser@google.com

Ankit Anand
DeepMind
anandank@google.com

Zafarali Ahmed
DeepMind
zaf@google.com

Xavier Glorot
DeepMind
glorotx@google.com

Laurent Orseau
DeepMind
lorseau@google.com

Lei Zhang
DeepMind
lmzhang@google.com

Doina Precup
DeepMind
doinap@google.com

Shibl Mourad
DeepMind
shibl@google.com

ABSTRACT

A major challenge in applying machine learning to automated theorem proving
is the scarcity of training data, which is a key ingredient in training successful
deep learning models. To tackle this problem, we propose an approach that relies
on training purely with synthetically generated theorems, without any human data
aside from axioms. We use these theorems to train a neurally-guided saturation-
based prover. Our neural prover outperforms the state-of-the-art E-prover on this
synthetic data in both time and search steps, and shows significant transfer to the
unseen human-written theorems from the TPTP library, where it solves 72% of
first-order problems without equality.

1 INTRODUCTION

Most work applying machine learning to theorem proving takes the following approach: 1) pick a
dataset of formalized mathematics, such as Mizar or Metamath, or the standard library of a major
proof assistant such as HOL-Light or Coq; 2) split the dataset into train and test; 3) use imitation
learning or reinforcement learning on the training set to learn a policy; and finally 4) evaluate the
policy on the test set (Loos et al. (2017), Bansal et al. (2019), Yang & Deng (2019), Han et al. (2021),
Polu & Sutskever (2020)) . Such methods are fundamentally limited by the size of the training set,
particularly when relying on deep neural networks (Kaplan et al., 2020). Unfortunately, unlike
in computer vision and natural language processing, theorem proving datasets are comparatively
tiny. Lean’s mathlib, for example, measures only 22MB, 25000x smaller than the text data used
in a powerful language model like GPT-3 (Brown et al., 2020). Due to the significant time and
expertise required to write formalized mathematics, we believe an alternative path to obtaining data
is required.

In this work we consider synthetically generating problems in order to train a neural theorem prover.
We focus on ten first-order domains (without equality) from the TPTP problem library (Sutcliffe,
2017). Each domain has an axiom set and problem set. Our problem generator, the forward proposer,
randomly generates theorems given an axiom set. These theorems are then used to train a first-order
resolution prover via a type of search distillation similar to AlphaZero (Silver et al., 2018). This
is a powerful training technique, allowing us to surpass the state-of-the-art E-prover (Schulz et al.,
2019) on the synthetic training distribution.

Unlike in Wang & Deng (2020), who train a theorem generator based on human-written theorems
from Metamath, neither proposer nor prover see any TPTP problems until test time. Nevertheless,
we see significant transfer from the synthetic distribution to TPTP test problems, with a jump from
42% for our basic non-learning prover to 72% for our best trained prover.

1

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

2 THE FORWARD PROPOSER

We obtain our training theorems using a simple but synthetic theorem generator, which we call
the forward proposer or FwdP. It starts from the clauses corresponding to the axioms of a specific
domain of mathematics (e.g., geometry) and uses the resolution calculus (Fitting, 2012) to infer new
clauses. The forward proposer generates new clauses in this fashion for a certain number of steps,
and uses the final clause as the conclusion of the theorem: Axioms→ Clause. As the process starts
with the axioms and the clauses are generated by logical inferences, this conjecture is guaranteed to
be a valid theorem in the given domain.

To force the proposer towards clauses with deeper proof trees, at each step (except the first) we
only allow inferences that involve the last generated clause. This is known as linear resolution,
and despite this restriction it is known to be as powerful as full resolution (Fitting, 2012). See
Appendix B.2 for a discussion of the forward proposer’s limitations.

The simplest forward proposer samples linear resolutions uniformly at random at each step. How-
ever, this has a tendency to generate exponentially large clauses, which do not make for interesting
theorems. So, we bias the resolutions towards smaller clauses using a softmax distribution based on
the clause sizes, as measured by number of symbols.

For a given domain, the forward proposer is parameterized by two quantities: the number of forward
steps N , and the softmax temperature T . Ultimately, we want to select these parameters in order to
maximize transfer from synthetic to real data. However, as this is expensive to measure, and since
we wish to be robust to unknown test problems, we used three proxy measures as criteria: size,
difficulty, and diversity. Intuitively, smaller problems are more interesting by an Occam’s Razor
argument, and thus more likely similar to the test problems. It is important to train on difficult
problems to be ready for difficult problems at test time. Finally, diversity is important for machine
learning to generalize from train to test; insufficient diversity results in overfitting.

Thus, for each domain we performed a grid search over both N and T and chose the setting which
maximized difficulty for the first-order E-prover (Schulz et al., 2019) while capping the mean gen-
erated clause size to 64. We ensured diversity by sampling one million theorems per parameter
setting, and requiring that there be at least 500K unique theorems among them; in practice this did
not disqualify any relevant parameter settings. For more details see Appendix B.1.

3 A NEURAL RESOLUTION PROVER

Our prover uses the first-order resolution calculus to find refutation proofs, similar to well-known
automated theorem provers such as E and Vampire (Kovács & Voronkov, 2013). We use a simple
implementation of the “given-clause” algorithm (McCune & Wos, 1997), and do not support su-
perposition or first-order equality. Briefly, the given-clause algorithm begins with a set of clauses
to refute, typically the axioms and negated conjecture. Clauses are added to this “active” set one-
by-one from the available inferences (resolutions and factorings) until falsehood (the empty clause)
is derived, or time runs out. The selection of the “given” clause at each step is done by a cost
function, which independently scores each available inference. Inference costs are only computed
once, when the inference is made, and are not updated based on changing proof state. Because the
number of available inferences can grow very rapidly, this loss in expressiveness comes with major
efficiency gains, particularly when using expensive neural cost functions. For more a more detailed
explanation of our prover and its features, see Appendix C.

Similarly to Loos et al. (2017), we use a neural network cost function which is trained to predict
whether a given clause will appear in the proof. However, rather than learning from a fixed dataset
of proof attempts, we train on proofs generated by the neural prover itself. Similarly to online
reinforcement learning, as the network improves, so does the data distribution.

More concretely, for each successful proof search, we determine which clauses were part of the
found proof and use them as positive examples for the network. We then sample an equal number
of negative examples uniformly from the remaining clauses which did not appear in the proof. Sur-
prisingly, more sophisticated negative sampling methods did not help. Unsuccessful proof attempts
are discarded and do not contribute to training.

2

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

3.1 ARCHITECTURES AND REPRESENTATIONS

In this work we explored two different neural architectures for the cost function: 1) a multi-layer
perceptron (MLP) on top of a fixed set of aggregated clause statistics, and 2) a Transformer (Vaswani
et al., 2017) on top of a graphical representation of the clause with spectral features. Both models
take as input the theorem to be proven and a target clause, and output a single logit representing
the probability that the target clause will be used in the proof of the theorem. The theorem itself is
represented by the initial clauses, which are either axioms or negated conjecture clauses. Since the
axioms are the same for all theorems, we only expose the negated conjecture clauses to the model.
As mentioned above, the cost function does not see the rest of the (typically very large) proof state.

The MLP model needs a fixed-size representation of the target and negated conjecture clauses. For
each clause we use a small set of quantities such as the number of variables or literals in the clause,
and aggregate over the negated conjecture clauses independently from the target. See Appendix D
for full details.

The Transformer uses a more complete representation based on a graphical representation of the
input. Each clause is transformed into its syntax tree, and the nodes are augmented with both type
information (clause, literal, atom, or variable) and a vector hash of the symbol text. This way, each
functor and predicate is given a stable feature vector. In sequence modeling, each input token to a
transformer is given a positional encoding representing its position in the sequence. Analogously,
we give each node a spectral encoding representing its position in the graph; this is given by the
eigenvectors of the Laplacian matrix of the graph (Dwivedi & Bresson, 2021).

4 EXPERIMENTS AND RESULTS

In our experiments, we used axiom sets and problems available in the TPTP library. These axioms
come separated according to the different domains of mathematics and reasoning. We formed ax-
iom sets by grouping axiom files that occur together in the same problems. We then filtered out
any axiom sets with more than 1000 axiom clauses or less than ten associated theorems. We also
excluded any domains that required first-order equality. This left us with ten axiom sets, covering
field theory (FLD), geometry (GEO), number theory (NUM), group theory (GRP), set theory (SET)
and knowledge representation (KRS). See Table 1 in the appendix for the numbers of axioms and
TPTP theorems in each dataset.

For each domain, we trained an MLP and Transformer prover on forward proposer problems using
the appears-in-proof prediction procedure described in Section 3. We then evaluated on both a
random sample of 1000 forward proposer problems and the associated TPTP problem set. For
comparison, we used two baselines: 1) a “basic” version of our prover with a simple (not learned)
cost function based on clause size, and 2) E-prover version 2.5 with the --auto flag. All four
provers were given 5 minutes per problem. See Appendix E for full experimental details.

Figure 1: Prover solve rates on FwdP and TPTP datasets.

Overall, we found that the Transformer consistently outperformed the other provers on the synthetic
problem distribution, in both problems solved and search steps (Figure 2, left). Even the MLP nearly

3

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

tied the state-of-the-art E-prover in terms of problems solved, and was significantly more efficient in
search steps. These results validate the power of machine learning in the presence of plentiful data.

As expected, TPTP proved much harder for our neural provers, with results somewhat mixed be-
tween the MLP and Transformer depending on axiom set. However, we find it mildly surprising
that the Transformer’s greater capacity does not necessarily lead to overfitting on the significantly
different training distribution; instead, the relative performance difference between the two is similar
on FwdP and TPTP totals, in both search steps and total number of theorems proven. This indicates
that genuinely useful proving heuristics are being learned from even the simple forward proposer’s
data.

Figure 2: Survival plots showing search steps (number of clauses generated) per problem versus
number of problems solved. Results are aggregated across all problem domains. The transformer
model consistently requires an order of magnitude fewer search steps than the MLP.

5 DISCUSSION

The results presented here lend some credence to the hypothesis that synthetic problems can be used
to train a theorem prover. However, it is clear that more sophisticated proposers are necessary going
forward. For one, the transformer prover is close to 100% on most synthetic domains, and so has
little left to learn from the current Forward Proposer.

There have been various attempts at automated task generation outside of theorem proving
(Racaniere et al. (2020), Sukhbaatar et al. (2018), Dennis et al. (2021), Forestier et al. (2020)).
Many of these are applicable, with some modifications, to theorem generation. For example, a pol-
icy or cost function could be trained to optimize a mixture of difficulty (as estimated by a judge) and
clause size. Diversity could be maintained by injecting noise, co-training with a prover (so that the
notion of difficulty is non-stationary), or by being measured with a generative model and optimized
for.

There is a limit, however, to simply optimizing for size, difficulty, and diversity. Indeed, mathematics
is full of uninteresting problems that meet these criteria, such as cryptographic instances of prime
factorization or hash function inversion. What we would ultimately want is for a proposer to find
interesting problems, as these are the ones that we as humans care about (and thus put into the test
set). Formalizing a notion of interestingness is the holy grail of task generation, but has remained
elusive thas far (Schmidhuber (2009) makes an attempt based on compression).

However, there may be a solution to the interestingness problem in theorem proving. The tasks in
theorem proving are conjectures; once proven, they become theorems which themselves may be used
in the proofs of other conjectures. This provides concrete feedback about which tasks (theorems)
are in fact useful, arguably an important criterion for what interests human mathematicians. Once
quantified, this notion of usefulness could be learned and optimized for by a proposer.

4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

REFERENCES

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist:
An environment for machine learning of higher-order theorem proving, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Albin Cassirer, Gabriel Barth-Maron, Thibault Sottiaux, Manuel Kroiss, and Eugene Brevdo. Re-
verb: An efficient data storage and transport system for ml research. https://github.com/
deepmind/reverb, 2020. URL https://github.com/deepmind/reverb. [Online;
accessed 01-June-2020].

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
2021.

Melvin Fitting. First-order logic and automated theorem proving. Springer Science & Business
Media, 2012.

Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated
goal exploration processes with automatic curriculum learning, 2020.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In International
Conference on Computer Aided Verification, pp. 1–35. Springer, 2013.

Char-Tung Lee. A completeness theorem and computer program for finding theorems derivable
from given axioms. PhD thesis, Department of Electrical Engineering and Computer Science,
University of California, 1967.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. In Thomas Eiter and David Sands (eds.), LPAR-21, 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12,
2017, volume 46 of EPiC Series in Computing, pp. 85–105. EasyChair, 2017. URL http:
//www.easychair.org/publications/paper/340345.

William McCune and Larry Wos. Otter - the CADE-13 competition incarnations. J. Autom. Reason-
ing, 18(2):211–220, 1997. doi: 10.1023/A:1005843632307. URL https://doi.org/10.
1023/A:1005843632307.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

5

http://github.com/google/jax
http://github.com/google/jax
https://github.com/deepmind/reverb
https://github.com/deepmind/reverb
https://github.com/deepmind/reverb
http://www.easychair.org/publications/paper/340345
http://www.easychair.org/publications/paper/340345
https://doi.org/10.1023/A:1005843632307
https://doi.org/10.1023/A:1005843632307

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

G. D. Plotkin. A note on inductive generalization. In Machine Intelligence 5, pp. 153–163. American
Elsevier, 1970.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020.

Sebastien Racaniere, Andrew K. Lampinen, Adam Santoro, David P. Reichert, Vlad Firoiu, and
Timothy P. Lillicrap. Automated curricula through setter-solver interactions, 2020.

Alexandre Riazanov and Andrei Voronkov. The design and implementation of vampire. AI commu-
nications, 15(2, 3):91–110, 2002.

Jurgen Schmidhuber. Simple algorithmic theory of subjective beauty, novelty, surprise, interesting-
ness, attention, curiosity, creativity, art, science, music, jokes. 2009.

Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher, stronger: E 2.3. In Pacal
Fontaine (ed.), Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, pp. 495–507.
Springer, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fer-
gus. Intrinsic motivation and automatic curricula via asymmetric self-play, 2018.

G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP
v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ul-
rike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pp. 5998–6008, 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems. CoRR,
abs/2002.07019, 2020. URL https://arxiv.org/abs/2002.07019.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 6984–6994. PMLR, 2019. URL
http://proceedings.mlr.press/v97/yang19a.html.

A AXIOM SETS

B FORWARD PROPOSER

B.1 FORWARD PROPOSER SETTINGS

See Table 2 for the numbers of forward steps and temperatures used in the forward proposer for each
axiom set.

6

http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://arxiv.org/abs/2002.07019
http://proceedings.mlr.press/v97/yang19a.html

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Axiom Set Domain Axioms Theorems

FLD1 Field Theory 27 78
FLD2 Field Theory 26 105
GEO6 Geometry 46 128
GEO7 Geometry 58 38
GEO8 Geometry 35 128
GEO9 Geometry 66 37
GRP5 Group Theory 7 10
KRS1 Knowledge Representation 108 41
NUM9 Number Theory 42 30
SET1 Set Theory 24 11

Table 1: Axiom sets and human-written theorems extracted from TPTP.

Axiom Set Forward Steps Temperature

FLD1 15 10
FLD2 10 12
GEO6 10 8
GEO7 5 12
GEO8 10 8
GEO9 15 4
GRP5 10 20
KRS1 5 ∞
NUM9 10 20
SET1 10 5

Table 2: Forward proposer settings.

B.2 LIMITATIONS OF THE FORWARD PROPOSER

It should also be noted that, although the resolution calculus is implication-complete (Lee, 1967)
(i.e the forward proposer is capable of generating (almost) any clause implied by the axioms) 1,
there is a class of theorems that it cannot generate: those whose conclusion cannot be expressed as
a single clause. This includes theorems that introduce new symbols, new axioms and hypotheses, or
existential quantifiers. However, most TPTP theorems (77.7%) are in fact forward-proposable; see
Appendix B.3.

B.3 FORWARD PROPOSABILITY OF TPTP THEOREMS

A theorem is considered forward-proposable with respect to its axiom set if it can be written in
the form Axioms→ Conjecture Clause. Whether this is the case may not be immediately obvious
from a TPTP problem statement; for example, many TPTP problems are already negated and CNF-
ized for refutation proving. However, if a theorem is in fact forward-proposable, its negated CNF
will contain two clause sets: the axioms, and the (unit) clauses corresponding to the negation of
the conjecture clause. Thus, it suffices to construct a clause whose functors and predicates appear
in the axioms, and whose negation produces the non-axiom clauses (given appropriate namings of
Skolem constants). This is possible exactly when each non-axiom clause a) is unit, b) contains no
variables, and c) only uses symbols from the axioms, with the exception of constants (which are
Skolemized variables). Table 3 summarizes the forward-proposability of TPTP problems across the
various domains.

1”Lee’s theorem” states that for any clause C that is implied by the axioms, there is a clause C′ that can be
generated by the resolution calculus such that C′ subsumes C. For more details, see Fitting (2012).

7

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Axiom Set Forward-Proposable Total Percent

FLD1 75 78 96.2
FLD2 102 105 97.1
GEO6 95 128 74.2
GEO7 33 38 86.8
GEO8 69 128 53.9
GEO9 33 37 89.2
GRP5 10 10 100.0
KRS1 40 41 97.6
NUM9 4 30 13.3
SET1 10 11 90.9

TOTAL 471 606 77.7

Table 3: Forward-proposability by axiom set.

C DETAILS OF THE RESOLUTION PROVER

In this section, we describe the details of our resolution prover. The pseudo-code can be found in
Algorithm 1. The procedures θ-subsumption, find_resolutions, and find_factors
are the same as for other provers (Riazanov & Voronkov, 2002; Schulz et al., 2019).

The main procedure is refute and takes three inputs: the initial set of clauses (this includes axioms
and negated conjecture clauses), a cost function2 which takes as input a clause and outputs its cost,
and the age-cost ratio hyperparameter a : c. It maintains two priority queues at any given time: an
age priority queue qa and a cost priority queue qc. The age priority queue is ordered solely by
the iteration number at which a clause is generated, which ensures that every generated clause is
processed after a finite number of iterations. The cost priority queue is ordered by the output of the
cost function. The algorithm also maintains a set of processed clauses P . To begin with, all the
initial clauses are inserted into both priority queues.

At each iteration of the algorithm, first we select a priority queue based on the age-cost ratio a :
c: The age queue is selected for a consecutive iterations, then the cost queue is selected for c
consecutive iterations an so on. After selecting a queue, we select the clause Ct that is at the top of
this queue and remove it from both queues. If the clause is the empty clause, a refutation has been
found and the theorem is proved. Otherwise, the algorithm then conducts standard subsumption
checks for the selected clause Ct with the existing set of processed clauses P (initially empty).
Specifically, we check forward and backward θ-subsumption (Plotkin, 1970) to remove unnecessary
clauses. Forward subsumption checks if the selected clause Ct is less general than any clause in the
processed set. A clause C1 θ-subsumes a clause C2 if there exists a substitution θ that when applied
to C1 gives C2. Circularity of subsumption checks is avoided by performing forward subsumption
before backward subsumption. To avoid another pitfall of subsumption checks where resolution can
produce clauses that increase in size but also in generality at the same time, subsumed clauses are
removed only if they pass an additional test: we say that a clause C1 order-subsumes a clause C2 if
C1 has no more literals as C2 and if C1 θ-subsumes C2. If the selected clause is subsumed by any
existing clause in the processed set, it is simply discarded and we proceed to the next iteration with
the appropriate age or cost queue. Otherwise, we proceed to check for backward subsumption: if
any clause in the processed set P is order-subsumed by Ct, it is removed from P . Then, we compute
all possible inferences (resolutions and factors) of Ct with the remaining clauses in the processed
set P , and the generated clauses are inserted in the age and cost priority queues. We also insert the
clause Ct in the processed set. The algorithm iterates until the queues are empty, which indicates
that a refutation cannot be found and the initial set of clauses is satisfiable, meaning the theorem is
not true.

Observe that since all the initial clauses (axioms, hypotheses, etc.) are initially inserted in the priority
queues, they are be subject to subsumption checks when selected. We also do simple syntactic
tautology elimination. This is done by matching the negative literals of the clause to the positive

2This can be a handcrafted heuristic or computed by a neural network.

8

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

literals of the clause syntactically. If there is a one to one match, the clause is marked as tautology
and eliminated at the time of generation.

Algorithm 1 The saturation algorithm.

def order_subsumes(C1, C2):
return num_literals(C1) ≤ num_literals(C2) and θ-subsumes(C1, C2)

def refute(initial_clauses, cost_fn, age_cost_ratio):
a = numerator(age_cost_ratio) # a in the ratio a:c
c = denominator(age_cost_ratio) # c in the ratio a:c
qa = make_priority_queue(age) # age queue of unprocessed clauses
qc = make_priority_queue(cost_fn) # cost queue of unprocessed clauses
P = {} # set of processed clauses
qa.insert(initial_clauses)
qc.insert(initial_clauses)
t = 0
while not qc.empty():
if t % (a + c) < a:
Select the oldest unprocessed clause.
Ct = qa.extract_min()
qc.remove(Ct)

else:
Select the unprocessed clause with the least cost.
Ct = qc.extract_min()
qa.remove(Ct)

if is_empty_clause(Ct):
return "refutation_found" # i.e. unsatisfiable

FORWARD SUBSUMPTION
Discard Ct if it is order-subsumed by a clause in P.
if ∃C ∈ P s.t. order_subsumes(C, Ct):
continue

BACKWARD SUBSUMPTION
Discard any clause in P that is order-subsumed by Ct.
for C in P:
if order_subsumes(Ct, C):
P = P \ {C}

Enqueue the factors of Ct and any resolutions between Ct and the clauses
in P.

new_clauses = find_factors(Ct) ∪ find_resolutions(Ct, P)
qa.insert(new_clauses)
qc.insert(new_clauses)

Add Ct to the set of processed clauses.
P = P ∪ {Ct}

t = t + 1

return "refutation_not_found" # i.e. satisfiable

9

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

D FEATURE REPRESENTATIONS AND NEURAL ARCHITECTURES

Here we describe in more detail the neural architectures and the inputs for those architectures. All
neural networks were written in the Jax framework (Bradbury et al., 2018).

D.1 MULTI-LAYER PERCEPTRON

We used seven scalar features to represent each clause: number of negated literals, number of pos-
itive literals, number of atomic terms, number of distinct predicates, number of distinct functors,
number of distinct variables and total number of variables. The features of the initial clauses were
further aggregated via four different aggregation functions: sum, average, maximum and minimum.
Finally, three more scalars were concatenated to these: the number of the step at which the clause to
be evaluated was generated, the number of premises used in the inference that generated the clause
(between 0 and 2 depending on the type of inference used) and the number of initial clauses. In
total, there were 38 elements in the input vector.

We opted for a five layer MLP with layer sizes 256, 64, 16, 4 and 1, and ReLU activation (Nair &
Hinton, 2010). In training, the batch size was fixed to 4096 and learning rate to 10−4.

D.2 TRANSFORMER

We used a vanilla 6-layer transformer architecture with a hidden size of 128 per node, a hidden size
of 256 in the residual blocks, and 8 attention heads. The graphical inputs were capped to 256 nodes
by dropping any additional nodes past the first 256. Symbols were hashed to 16-dimensional vectors
following a standard normal distribution. The batch size was fixed to 256 and the learning rate to
10−4.‘

D.3 COST FUNCTION

We compute the cost of a clause using a mixture of the clause’s (negative) probability of appearing
the proof, as predicted by the neural network, and the clause’s size (number of symbols), with a ratio
of 64:1. This means that early on in training, when the neural net cannot yet distinguish between its
different inputs, the cost function falls back on the clause size, as in the “basic” prover.

E EXPERIMENTAL DETAILS

Our experiments were distributed across many machines and used several types of workers working
in concert:

1. A replay buffer which stores the positive and negative examples. The buffer had a max-
imum size of 65536, and examples were sampled and removed uniformly at random. We
used the open-source Reverb implementation (Cassirer et al., 2020).

2. A learner which trains the neural network on data sampled from the replay buffer. In our
experiments the learner ran on a V100 GPU.

3. Many actors which repeatedly sample problems from the forward proposer and attempt
to solve them. Solved problems result in positive and negative clause samples which are
placed into the replay buffer as described in Section 3. Periodically (every minute), each
actor pulls the latest version of the network parameters from the learner.

During training, actors are given a 5-minute time limit per problem. The MLP experiments used
256 actors running on CPUs, while the transformer experiments used 1024 actors sharing a pool of
32 Google V2 TPUs for inference (MLPs were not found to benefit from TPU acceleration). All
reported results were taken after two days of training. This may seem to unfairly disadvantage the
MLPs computationally, but letting the MLPs run for an additional 4 days saw no improvements on
any axiom set.

10

	Introduction
	The Forward Proposer
	A Neural Resolution Prover
	Architectures and Representations

	Experiments and Results
	Discussion
	Axiom Sets
	Forward Proposer
	Forward Proposer Settings
	Limitations of the Forward Proposer
	Forward Proposability of TPTP Theorems

	Details of the resolution prover
	Feature Representations and Neural Architectures
	Multi-Layer Perceptron
	Transformer
	Cost Function

	Experimental Details

