
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

DISTILLING WIKIPEDIA MATHEMATICAL KNOWLEDGE
INTO NEURAL NETWORK MODELS

Joanne T. Kim∗
Lawrence Livermore National Laboratory
Livermore, CA 94550, USA
kim102@llnl.gov

Mikel Landajuela Larma∗
Lawrence Livermore National Laboratory
Livermore, CA 94550, USA
landajuelala1@llnl.gov

Brenden K. Petersen∗†
Lawrence Livermore National Laboratory
Livermore, CA 94550, USA
bp@llnl.gov

ABSTRACT

Machine learning applications to symbolic mathematics are becoming increas-
ingly popular, yet there lacks a centralized source of real-world symbolic expres-
sions to be used as training data. In contrast, the field of natural language process-
ing leverages resources like Wikipedia that provide enormous amounts of real-
world textual data. Adopting the philosophy of “mathematics as language,” we
bridge this gap by introducing a pipeline for distilling mathematical expressions
embedded in Wikipedia into symbolic encodings to be used in downstream ma-
chine learning tasks. We demonstrate that a mathematical language model trained
on this “corpus” of expressions can be used as a prior to improve the performance
of neural-guided search for the task of symbolic regression.

1 INTRODUCTION

“The basis of all human culture is language, and mathematics is a special kind of
linguistic activity.”

— Arnold & Manin (2000)

A growing number of machine learning works leverage datasets of mathematical expressions to
perform various symbolic reasoning tasks. These tasks include symbolic regression (Koza, 1992;
Petersen et al., 2021), symbolic integration (Lample & Charton, 2019), solving differential equa-
tions, (Lample & Charton, 2019), and freeform mathematical question/answering (Saxton et al.,
2019). The expression datasets used to complete these tasks are typically generated procedurally
using various rules or heuristics (Lample & Charton, 2019; Saxton et al., 2019), crafted by hand
(Uy et al., 2011), or manually extracted from existing texts (Udrescu & Tegmark, 2020). Yet, to
the best of our knowledge, there exists no large-scale, customizable, and/or widely used dataset of
mathematical expressions.

Figure 1: Pipeline for generating the “corpus” of mathematical expressions.

∗All authors contributed equally. †Corresponding author.

1

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

We introduce a simple pipeline for extracting mathematical expression encodings directly from raw
Wikipedia text. Wikipedia is an excellent source for extracting mathematical knowledge for sev-
eral reasons. First, Wikipedia is ever-growing and spans virtually all scientific domains. Second,
expressions embedded in Wikipedia are conveniently annotated via XML tags and follow standard
markup encodings (i.e. LaTeX), facilitating extraction and parsing. Third, Wikipedia is structured
into hierarchical categories, allowing users to extract customized expression corpora, e.g. based on
a particular branch of science. Finally, raw Wikipedia data dumps are frequently updated (without
requiring web-crawling), easy to access, and freely available.

We demonstrate the practical use of our expression dataset by using it to train a mathematical lan-
guage model, then using the trained model as a prior in a downstream neural-guided search task.
Specifically, we consider symbolic regression, the task of searching the space of tractable mathemat-
ical expressions to fit a dataset. Symbolic regression is an excellent testbed problem for symbolic
search because it poses a large combinatorial search space, is computationally inexpensive, and has
well-established suites of benchmark problems (White et al., 2013). We demonstrate that leveraging
a pre-trained mathematical language model as a prior to guide the search improves the ability to re-
cover symbolic expressions from data, and provides other advantages such as reduced semantically
invalid expressions.

2 RELATED WORK

Datasets of expressions. Various expression datasets have been proposed for symbolic tasks. Lam-
ple & Charton (2019) procedurally generate expressions to perform symbolic mathematics, specif-
ically to perform integration and solve ordinary differential equations. Expressions are randomly
generated with hand-crafted rules, followed by a cleaning process to simplify and remove invalid
expressions. Saxton et al. (2019) released a dataset for mathematical reasoning, which is also gen-
erated through rules that sample answer and generates matching questions. Udrescu & Tegmark
(2020) introduce a dataset of 120 expressions to be used as benchmarks for symbolic regression,
manually pulled from the Feynman lectures on physics (Feynman et al., 1965). To the best of our
knowledge, there exists no large-scale dataset (or dataset-generating pipeline) of real-world sym-
bolic expressions.

Mathematics as language. The perspective of viewing mathematics as a form of language dates
as far back as the history of mathematics itself (Arnold & Manin, 2000). Within machine learning,
Lample & Charton (2019) recently addressed symbolic mathematics as a machine translation prob-
lem, representing mathematical expressions as sequences and solving mathematical problems with
a seq2seq model. We also consider mathematics as language to create a mathematical language
model based on human-created, widely-used mathematical expressions in Wikipedia.

3 METHODS

Figure 2: Wikipedia hierarchy structure.

Extracting an expression corpus from Wikipedia. Our
pipeline for extracting expressions from Wikipedia is il-
lustrated in Fig. 1. Wikipedia provides its raw text data
as XML (Extensible Markup Language) “dump” files.1
Since it is written in a markup language, users can easily
parse this dataset of rich information. Specifically, we ex-
tract embedded mathematical expressions, which are an-
notated via <math> tags (Fig. 1b-c). Raw expressions
are represented by LaTeX text, which we convert into a
tree-based representation—called an algebraic expression
tree—via the computer algebra system SymPy (Meurer
et al., 2017)2. Finally, expressions are encoded as se-
quences of tokens corresponding to the pre-order traver-
sal of the algebraic expression tree. This data can then be
readily used for downstream machine learning pipelines.

1https://dumps.wikimedia.org
2https://sympy.org/

2

https://dumps.wikimedia.org
https://sympy.org/

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

We also leverage Wikipedia’s hierarchical page categorizations. As illustrated in Fig. 2, each cat-
egory comprises subcategories and pages, forming a tree structure. Pages are the user interface to
access content in Wikipedia, while categories are metadata used to point users to related content.
To build a category tree, we need the edges connecting page and categories. Edge information is
only partially available in the XML dump files. Therefore, we resort to the database provided by
MediaWiki.3 In particular, this database includes three relevant tables: Categorylinks, Category,
and Page (Fig. 4 in the Appendix). Using database management system such as MySQL, we use
this to generate a category tree from a given root category. Since categories may not be in strict
hierarchy (i.e. they can be recursive), we specify a maximum search depth. In this manner, users
can customize the expression dataset to specific categories (e.g. scientific domain) of interest.

Training a mathematical language model. By considering each symbolic token as a “word” from
a dictionary of tokens, and each sequence of tokens (i.e. expression) as a “sentence,” we propose
building a mathematical language model (MLM) to estimate the probability for a mathematical
expression represented by a sequence of tokens.

Before training the MLM, we first filter and augment the dataset based on the operators and operands
used in the downstream learning task. For instance, if the task does not use integrals, each expres-
sion containing an integral symbol could be simply removed. Instead, we choose two approaches
to augment this data: replacing and splitting. When an integral appears while traversing the expres-
sional tree, the whole subtree with a root of integral can be replaced with a terminal token. Another
approach is splitting the tree to use the expression in the integrand for data augmentation.

Finally, we train a recurrent neural network (RNN) with our preprocessed and augmented expression
dataset to create a MLM using the set of given symbols as the vocabulary. Specifically, we train the
MLM to predict the next token in a sequence by minimizing the cross-entropy loss between the
output of the RNN and the given label. This strategy is standard in natural language processing
(NLP) for training language models that predict the next word or character given a partial sequence
(Mikolov et al., 2010).

Figure 3: Integration between DSR and the MLM
prior. For each token, each architecture (DSR,
MLM) outputs a vector of logits. Logits are com-
bined, constraints are applied, and a final soft-
max determines the categorical distribution from
which a token is sampled.

Integrating with deep symbolic regression.
Deep symbolic regression (Petersen et al.,
2021) uses an autoregressive recurrent neural
network, or Controller, parameterized by θ, that
emits a categorical distribution on which token
to select next, conditioned on all previously se-
lected tokens.

Here, we propose using the MLM to inform the
Controller by directly adjusting the logits that
are emitted by it, as in Fig. 3. Specifically, at
time step i, given input x (e.g. the previously
selected token), the Controller emits logits `(i)DSR

and updates its internal state c(i)DSR :

(`(i)DSR , c
(i)
DSR) = Controller(x, c(i−1)DSR ; θ)

Further, DSR allows incorporating in situ con-
straints to the search space (e.g. constraining
nested trigonometric operators) via logits `(i)� ,
whose values are either zero or negative infin-
ity (see Petersen et al. (2021) for details). To
incorporate the MLM into this generative pro-
cess, we introduce a third vector of logits com-
puted by the MLM:

(`(i)MLM, c
(i)
MLM) = MLM(x, c(i−1)MLM ;φ)

Finally, the logit vectors are summed, a softmax
operator is applied, and the resulting probabil-
ity vector defines a categorical distribution used

3https://mediawiki.org

3

https://mediawiki.org

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Table 1: Comparison of recovery rate, mean steps to solve, and mean rate of invalid expressions in
the symbolic regression task with and without the MLM prior.

DSR without MLM DSR with MLM
Benchmark Recovery Steps Invalid Recovery Steps Invalid
x3 + x2 + x 100.% 165.2 47.82 100.% 99.47 56.75

x4 + x3 + x2 + x 100.% 264.6 35.86 100.% 235.6 36.46
x5 + x4 + x3 + x2 + x 100.% 349.2 28.35 100.% 329.1 26.93

x6 + x5 + x4 + x3 + x2 + x 100.% 672.2 17.65 100.% 525.5 20.75
sin(x2) cos(x)− 1 76.% 847.8 23.67 94.% 672.8 22.81

sin(x) + sin(x+ x2) 100.% 189.3 45.26 100.% 120.3 51.63
log(x+ 1) + log(x2 + 1) 35.% 1513. 11.02 27.% 1620. 10.91√

x 95.% 601. 31.81 99.% 365.1 32.62
sin(x) + sin(y2) 100.% 117.8 34.35 100.% 95.52 27.34
2 sin(x) cos(y) 100.% 368.3 17.55 100.% 364.3 13.93

xy 100.% 22.36 56.37 100.% 12.58 41.13
x4 − x3 + 1

2y
2 − y 0.% 2000. 6.373 0.% 2000. 5.71

Average: 83.8% 592.6 29.7% 85.0% 536.7 28.9%

to sample the next token τi:

τi ∼ Categorical(Softmax(`(i)DSR + λ`(i)MLM + `
(i)
�)).

The hyperparameter λ ∈ R+ controls the strength of the MLM prior. We provide an interpretation
of λ based on the temperature of the softmax function. Note the softmax function with temperature
T and logits ` is defined as: softmaxT (`) $ softmax(`/T). Multiplying logits by λ yields:

λ` = inverse-softmax(softmax(λ`)) = inverse-softmax(softmaxλ−1(`)),

where inverse-softmax is defined up to an arbitrary constant. Thus, λ can be viewed as the inverse
temperature of the MLM prior’s contribution to the final softmax. Higher temperatures (lower λ)
result in a lower influence of the MLM prior on the final softmax. At the extreme, λ→ 0 corresponds
to infinite temperature, in which case the MLM prior is ignored.

Pseudocode for DSR integrated with the MLM prior is provided in the Appendix. Note that the
recurrent architecture used in the MLM can be completely different than the one used in DSR; this
allows the MLM to be pre-trained offline.

4 RESULTS AND DISCUSSION

Dataset statistics. From a raw Wikipedia dump file of∼70 GB, we extracted 798,998 mathematical
expressions across 41,763 different pages. As an example of using the category hierarchies, when
we search pages under the category Physics with depth 3, we collect 67,404 expressions from 2,265
pages in 879 categories, while Physics itself has 25 pages with 1,374 expressions.

Application to symbolic regression. We demonstrate the value of the MLM by using it to inform
the task of symbolic regression. For simplicity, we replicate the experimental setup and hyper-
parameters detailed in Petersen et al. (2021), leveraging the accompanying open-source package
“Deep Symbolic Regression.” The only change is the introduction of the MLM prior as previously
described, sweeping over inverse temperature hyperparameter λ ∈ {0.1, 0.2, . . . , 1.0}. The MLM
is trained for 200 epochs using a recurrent neural network with a hidden layer size of 256, showing
the cross-entropy loss going down to 0.367.

In Table 1, we report the recovery rate (fraction of runs in which the exact symbolic expression is
found), average number of steps required to find the solution, and the fraction of invalid expressions
(those that produce floating-point errors, e.g. overflows) produced during training, over 100 inde-
pendent runs. The MLM prior show an improvement in recovery rate, requiring fewer steps and
generating fewer invalid expressions. In particular, we note the dramatic reduction in steps required
to find expressions

√
x, sin(x) + sin(y2), and xy . Overall, these results show that the use of the

MLM provides a better informed search in symbolic regression tasks.

4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

5 CONCLUSION AND FUTURE DIRECTION

We introduce a pipeline for generating a largescale “corpus” of mathematical expressions directly
from Wikipedia, and demonstrate that a language model trained on this dataset can improve neural-
guided search for the task of symbolic regression. Possible alternative uses of a MLM include auto-
completion of writing expressions in LaTeX, or improving recognition of hand-written expressions.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National
Security, LLC. LLNL-CONF-820039.

REFERENCES

V Arnold and Yu Manin. Mathematics as profession and vocation. In Mathematics: Frontiers and
Perspectives, pp. 153–159. American Mathematical Society, 2000.

Richard P Feynman, Robert B Leighton, Matthew Sands, and EM Hafner. The feynman lectures on
physics; vol. i. American Journal of Physics, 33(9):750–752, 1965.

John R Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection, volume 1. MIT press, 1992.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh annual conference of the international speech
communication association, 2010.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. Proc. of the International Conference on Learning Representations,
2021.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galván-
López. Semantically-based crossover in genetic programming: application to real-valued sym-
bolic regression. Genetic Programming and Evolvable Machines, 12(2):91–119, 2011.

David R White, James Mcdermott, Mauro Castelli, Luca Manzoni, Brian W Goldman, Gabriel
Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and Sean Luke. Better gp benchmarks:
community survey results and proposals. Genetic Programming and Evolvable Machines, 14(1):
3–29, 2013.

5

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

A APPENDIX

Figure 4: Schema of Wikipedia database tables used to extract hierarchy tree of categories and
pages. The Categorylinks table holds the subcategory information by setting cl type as subcat.
Note that categorylinks.cl from stores the id of the article which matches page.page id,
a primary key, while categorylinks.cl to stores the name of the category as text.

Algorithm 1 Generating an expression from DSR under the MLM
input DSR controller with parameters θ; MLM with parameters φ; library of tokens L
output Pre-order traversal τ of an expression sampled from the RNN

1: τ ← [] . Initialize empty traversal
2: x← empty‖empty . Initial RNN input is empty parent and sibling
3: c0 ← ~0 . Initialize RNN cell state to zero
4: for i = 1, 2, . . . do
5: (`

(i)
DSR , c

(i)
DSR)← Controller(x, c(i−1)DSR ; θ) . Emit DSR logits; update DSR state

6: (`
(i)
MLM, c

(i)
MLM)← MLM(x, c

(i−1)
MLM ;φ) . Emit MLM logits; update MLM state

7: `
(i)
� ← Constraints(L, τ) . Compute constraints

8: p(i) ← Softmax(`(i)DSR + λ`
(i)
MLM + `

(i)
�) . Compute probability vector

9: τi ← Categorical(p(i)) . Sample next token
10: τ ← τ‖τi . Append token to traversal
11: if expression complete then return τ . If expression is complete, return it
12: x← ParentSibling(τ) . Compute next parent and sibling
13: end for

6

	Introduction
	Related Work
	Methods
	Results and Discussion
	Conclusion and Future Direction
	Appendix

