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ABSTRACT

A key component of mathematical reasoning is the ability to formulate interesting
conjectures about a problem domain at hand. This task has not yet been widely
studied by the automated reasoning and AI communities, but we believe interest
is growing. In this paper, we give a brief overview of a theory exploration system
called QuickSpec, able to automatically discover interesting conjectures about a
given set of functions. QuickSpec works by interleaving term generation with
random testing to form candidate equational conjectures. This is made tractable
by starting from small sizes and ensuring that only terms that are irreducible with
respect to already discovered equalities are considered. QuickSpec has been suc-
cessfully applied to generate lemmas for automated inductive theorem proving as
well as to generate specifications of functional programs. We also give a small
survey of different approaches to conjecture discovery, and speculate about future
directions combining symbolic methods and machine learning.

1 INTRODUCTION

What makes a conjecture interesting and worth trying to prove as a lemma? For a human mathe-
matician the motivation might be that the statement would make another proof shorter, clearer and
easier to understand, or that the lemma captures, for instance, some common algebraic property of
a structure of interest. Coming up with the right lemma in the right situation is sometimes described
as a eureka step: a sudden insight that makes a solution almost obvious.

However, automating these kind of creative steps in the context of automated reasoning is difficult
both for symbolic and data-driven methods: Interesting lemmas might not fall out from simply
applying deductive rules to axioms in a theorem prover; and when considering a new mathematical
theory or structure, we might not have a lot of previous proofs in the domain, which makes it difficult
to directly apply traditional machine learning techniques.

In the context of automation of inductive proofs, there has been work on patching failed proof at-
tempts by speculating lemmas using e.g. various proof critics, ranging from simply generalising
the goal by replacing common subterms with new variables, to more complex methods requiring
specialised heuristics and search (Boyer & Moore, 1979; Ireland & Bundy, 1996; Dixon & Johans-
son, 2007). However, we will here describe a different approach, theory exploration, which instead
of trying to construct lemmas from specific proof attempts, proceeds bottom-up: given a set of
concepts, what interesting conjectures can we come up with?

The theory exploration tool QuickSpec (Smallbone et al., 2017) generates conjectures about a set
of functions given by the user. It works by enumerating terms starting from small sizes up to a
user specified limit, and then evaluating them at random values to determine if any terms appear to
be equal. To avoid uninteresting conjectures, and manage the search space, only terms that have a
unique normal form with respect to what has been discovered so far are kept. To give the reader a
flavour of what the system can do, figure 1 shows the complete output of QuickSpec on the theory of
natural numbers with addition, multiplication and greatest common divisor, implemented as func-
tions in Haskell. QuickSpec takes about 5 seconds to run on this example. Note that QuickSpec has
no built-in knowledge of the laws of arithmetic, so everything in figure 1 is invented from scratch.
These laws include common properties such as commutativity, associativity, distributivity and iden-
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1. x+y = y+x 12. gcd(x,y) = gcd(y,x)
2. x+0 = x 13. gcd(x,x) = x
3. (x+y)+z=x+(y+z) 14. gcd(x,0) = x
4. x*y = y*x 15. gcd(x,1) = 1
5. x*0 = 0 16. gcd(x,x*y) = x
6. x*1 = x 17. gcd(x,x+y) = gcd(x,y)
7. (x*y)*z = x*(y*z) 18. gcd(gcd(x,y),z) = gcd(x,gcd(y,z))
8. x*(y+y) = y*(x+x) 19. gcd(x*y,x*z) = x*gcd(y,z)
9. x*(y+1) = x+(x*y) 20. gcd(x*x,y*y) = gcd(x,y)*gcd(x,y)

10. (x*y)+(x*z) = x*(y+z) 21. gcd(x*y,z+y) = gcd(x*z,z+y)
11. x*(y+(y+y)) = 22. gcd(x+x,y+y) = gcd(x,y)+gcd(x,y)

y*(x+(x+x)) 23. gcd(x+y,y+y) = gcd(x+x,x+y))
24. gcd(x*x,1+1) = gcd(x,1+1)

Figure 1: Complete QuickSpec output on a small theory about arithmetic.

tity laws, as well as more specific facts about gcd, such as law 19 (about numbers having common
factors), law 20 (about squares), the curious interchange law 21, and law 24 (which holds because 2
is prime). Notice that after discovering for instance law 5, x ∗ 0 = 0, QuickSpec will not generate
any terms where x∗0 is a subterm, as such a term would be reducible by applying law 5 as a rewrite
rule, and therefore is not considered interesting. This is one of the key observations that makes term
generation tractable (see Smallbone et al. (2017) for full technical details and optimisations of the
term generation algorithm). Note that QuickSpec itself does not prove any properties, but tests them
thoroughly on randomly generated values, using Haskell’s QuickCheck tool (Claessen & Hughes,
2000). Depending on the theory we are exploring we can of course pass the properties discovered
by QuickSpec on to a suitable automated or interactive theorem prover.

QuickSpec was originally designed to automatically discover equational properties about functional
programs written in Haskell, i.e. an algebraic specification (hence the name), but has also suc-
cessfully been used to discover lemmas for automated inductive provers, allowing improvements
in automation beyond the previous state-of-the-art (Claessen et al., 2013), and to help construct
theories in the interactive proof assistant Isabelle (Johansson, 2017).

2 TWO EXAMPLES FROM MATHEMATICS

To demonstrate that QuickSpec can also be applied to non-trivial and unfamiliar mathematical the-
ories, we now use it to explore two non-associative algebras: the octonions and Jordan algebras.

The octonions. Octonions (Baez, 2002) are the lesser known of the four normed division alge-
bras, the others being the real numbers, complex numbers and quaternions. They have some exotic
properties: unlike the reals and complex numbers, multiplication on octonions is neither associative
nor commutative. However, there are many interesting properties that they do satisfy. In Smallbone
et al. (2017), we investigated how many such properties QuickSpec could find about octonion mul-
tiplication and inverse, and we repeat that experiment here. QuickSpec took less than two seconds
to run and produced the 14 conjectures shown in Figure 2 (and no others). How many of these
properties are interesting? We make the assumption that human mathematicians give names to inter-
esting properties, and find that of the 14 properties, 12 have standard names1. Note that the unnamed
properties are consequences of diassociativity: expressions with two variables can be reassociated
arbitrarily2.

For this experiment, the octonions were modelled as a type in a Haskell program, using the Cayley-
Dickson construction: octonions are expressed as pairs of quaternions, which in turn are represented
as pairs of complex numbers, which then are pairs of reals. The reader should note that QuickCheck

1See e.g. https://groupprops.subwiki.org/wiki/. and https://en.wikipedia.org/
wiki/Quasigroup

2QuickSpec only kept (11) as it happened to discover it before the Moufang identity (13). In Smallbone
et al. (2017), the Moufang identity was discovered first because of a different term order, so (11) was pruned
away.
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1−1 = 1 inverse of identity element (1)
x ∗ 1 = x right identity axiom (2)
1 ∗ x = x left identity axiom (3)

(x−1)−1 = x involution of inverse (4)

x ∗ x−1 = 1 right inverse axiom (5)
(x ∗ x) ∗ y = x ∗ (x ∗ y) left alternative loop property (6)
(x ∗ y) ∗ x = x ∗ (y ∗ x) flexible loop property (7)
(x ∗ y) ∗ y = x ∗ (y ∗ y) right alternative loop property (8)

x−1 ∗ y−1 = (y ∗ x)−1 antiautomorphic inverse property (9)

x−1 ∗ (x ∗ y) = x left inverse property (10)
x ∗ (y ∗ (y ∗ x)) = (x ∗ y) ∗ (y ∗ x) (11)
x ∗ (y ∗ (y ∗ y)) = (x ∗ y) ∗ (y ∗ y) (12)
x ∗ ((y ∗ z) ∗ x) = (x ∗ y) ∗ (z ∗ x) Moufang identity (13)
(x ∗ (y ∗ x)) ∗ z = x ∗ (y ∗ (x ∗ z)) left Bol loop property (14)

Figure 2: Equalities discovered by QuickSpec about multiplication and inverse on the octonions.

cannot use arbitrary real numbers for testing, as most are uncomputable. Instead, the terms are tested
and evaluated on those octonions where each component is a rational number. This introduces the
risk that QuickSpec could produce false positives, but in this case, since the octonion operations are
built only from continuous functions on the real numbers such as multiplication, any equations that
hold for rational octonions in fact hold for all octonions.

Jordan algebras. Jordan algebras are non-associative algebras first invented to model measure-
ments in quantum mechanics (Jordan et al., 1934). In a Jordan algebra, multiplication is commuta-
tive and satisfies the Jordan identity, (xy)(xx) = x(y(xx)). As our Jordan algebra we took Hermi-
tian matrices3 equipped with the Jordan product, A ◦B := (AB+BA)/2. We gave QuickSpec the
operators ◦ and + and the identity and zero matrices, and a test data generator for random Hermitian
matrices. Generating general Hermitian matrices is however non-trivial, due to compatibility issues
(as for the octonions). We therefore restrict our generator function to a subset of Hermitian matrices
which are computable: symmetric square matrices over the rationals.

In a few seconds, QuickSpec produced equations (1)–(8) of Figure 3. We see that ◦ is commutative
(1) and satisfies the Jordan identity (7). It is not associative, but it does have the expected zero and
identity elements (2, 3), and distributes over + (6). The remaining laws (4, 5, 8) are consequences
of distributivity: (4, 5) are kept because they happen to be discovered before distributivity, and 8
because QuickSpec was unable to prove it. In all, of the 8 equations, 5 appear to be interesting.

The Jordan identity (7) perhaps looks strange, but is designed to make the algebra power-associative:
in a Jordan algebra, the expression xn = x◦. . .◦x has the same value no matter how the expression is
bracketed. To see if QuickSpec could discover power-associativity, we added the operator xn (with
an arbitrary bracketing) and re-ran QuickSpec. After a few seconds, it found equations (9)–(16).
Most of these are normal properties of the power operation, and suggest that, even though though
multiplication is non-associative, powers work as usual. In particular, 15 implies that the algebra is
power-associative. Equation 16 suggests the generalisation Am ◦ (An ◦ B) = An ◦ (Am ◦ B), an
important property of Jordan algebras, which is found if the maximum term size is increased to 9.

Summary. In both examples, we see that QuickSpec can take an unfamiliar structure and find
familiar laws about it. These laws help to demystify the structure, and can be a useful start for a
mathematician who wants to understand how the structure behaves.

3A Hermitian matrix is a square matrix with entries in the complex numbers which is its own conjugate
transpose. That is, each entry Aij is equal to the complex conjugate of Aji.
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A ◦B = B ◦A (1)
A ◦ 0 = 0 (2)
A ◦ I = A (3)

A ◦ (B +B) = B ◦ (A+A) (4)
A ◦ (B + I) = A+ (A ◦B) (5)

(A ◦B) + (A ◦ C) = A ◦ (B + C) (6)
A ◦ (B ◦ (A ◦A)) = (A ◦A) ◦ (A ◦B) (7)

A ◦ (B + (B +B)) = B ◦ (A+ (A+A)) (8)

A1 = A (9)
0n = 0 (10)
In = I (11)

(Am)n = Amn (12)
(A ◦A)n = An◦n (13)

An+1 = A ◦An (14)

Am ◦An = Am+n (15)
A ◦ (B ◦An) = An ◦ (A ◦B) (16)

Figure 3: Equalities discovered by QuickSpec about Jordan multiplication and power.

The source code for QuickSpec, together with the example code, are available online at
https://github.com/nick8325/quickspec.

3 RELATED WORK

Conjecture generation systems tend to roughly fall into three categories: heuristic rule-based sys-
tems, term generation-and-testing (to which QuickSpec belongs) and neural network-based systems.

Rule-based and Heuristic. The AM system is probably the first system designed to discover
mathematical concepts (Lenat, 1976). It relied on several hundred heuristic rules to generate math-
ematical concepts and conjectures, with each rule contributing a pre-defined “interestingness score”
to the result. The HR system had a similar goal of automating concept formation and conjecturing
(Colton, 2002). It took a set of axioms as inputs, and combined model finding with heuristic produc-
tion rules to invent new conjectures of interest. The MATHsAiD system was specifically designed
as a theory exploration system for mathematicians (McCasland et al., 2017). The discovery pro-
cess was guided by a forward reasoning process, which instantiated templates called theorem shells,
following heuristic plans constructed to reflect human mathematical reasoning.

In comparison, QuickSpec is a more light-weight system concerned only with conjecturing, not any
other concept formation tasks. It does not employ explicit heuristic rules: it simply generates terms
about the given concepts, and evaluates them on random values to learn which ones appear to be
equal. It also uses a very simple notion of interestingness: a term is interesting to explore if it is
non-reducible with respect to what is known so far. This makes it more flexible, as it can be used to
explore conjectures about any datatype for which it can generate examples.

Term Generation and Testing. Graffiti was a conjecture generation systems specifically for graph
theory (Fajtlowicz, 1988). It maintained a library of example graphs, and attempted to generate
conjectures of certain shapes, then checking them for consistency with its library examples. Unlike
QuickSpec, where new examples can be generated on demand, Graffiti’s set of examples was fixed,
leading to production of relatively many non-theorems.

The systems IsaCoSy (Johansson et al., 2011) and IsaScheme (Montano-Rivas et al., 2012) are
conceptually similar to QuickSpec, relying on term generation with different restrictions to avoid
trivial and redundant conjectures, combined with random testing. A key difference is however that
QuickSpec evaluates terms (and records the results), not whole equational statements, which greatly
improves efficiency. Another closely related system from the functional programming community
is Speculate (Braquehais & Runciman, 2017), which like QuickSpec, was designed to discover
properties about Haskell programs.

Neural Networks. Recently, techniques using large neural network architectures from natural
language processing have been applied to the problem of discovering new conjectures. Urban &
Jakubův (2020) train the transformer model GPT-2 on the Mizar Mathematical Library. With the
right parameters, they get GPT-2 to generate novel and well-typed conjectures in Mizar format.
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However, the output may include duplicates from the library as well as non-theorems. Rabe et al.
(2021) present a system based on self-supervised language models for mathematical reasoning tasks,
including generating a missing precondition for a given conditional statement, generating one side
of an equation given the other side, as well as “free-form” conjecturing. Between 13–30% of gener-
ated statements were both provable and new, with the remainder being for instance exact copies or
alpha-renamings of statements from the training set, or simply false.

The neural network approach is of course radically different to QuickSpec. QuickSpec was designed
to produce relatively small sets of interesting equations at a time, intended to be read by a human as a
specification for a functional program. It rarely generates any false or duplicate conjectures, thanks
to the integrated testing in the equation formation. Furthermore, QuickSpec is not dependent on
training data about the theory at hand being available, but does on the other hand require generators
to produce test data, with the caveat that the test data needs to be computable, or that a computable
proxy can be used (as in the octonion example).

4 FURTHER WORK AND CONCLUSIONS

The idea behind QuickSpec is simple: generate interesting terms and evaluate them on random test
data to see which ones appear to be equal. Despite this, it is fast and efficient when given relatively
small theories to explore. In a sense, QuickSpec is data-driven: it uses generator functions from
the automated testing framework QuickCheck to generate and evaluate as many ground examples
as it needs. This is also one of its limitations: trying to evaluate functions of high complexity
(e.g. exponentiation in Peano arithmetic) can drastically slow down testing if a large test case is
generated. Similarly, co-recursive functions can lead to non-terminating values. One solution is
to extend QuickSpec with observational equivalence checking (Einarsdóttir et al., 2018). The other
main weakness of QuickSpec is scalability. As it generates all non-redundant terms, the search space
eventually becomes intractable when faced with large theories (say, a library with 30+ functions) or
when asked to explore very large terms (sizes over about 9). Here, a combination with machine
learning could be fruitful. A human user can immediately judge which of QuickSpec’s equations
are “nice and sensible” or, on occasion, “weird and ugly” and thus not very interesting. Certain
shapes of conjectures are often both more useful and aesthetically pleasing, and QuickSpec could
be steered towards that part of the search space first. A recent extension to QuickSpec experiments
with doing this, using user provided templates when exploring larger theories and terms (Einarsdóttir
et al., 2021). A natural next step is to instead attempt to learn templates from a library of lemmas,
as suggested in Heras et al. (2013), thus creating a hybrid system where machine learning steers the
term generation towards interesting parts of the search space. Learned templates may also facilitate
search of non-equational conjectures, while still managing search space size.

We consider automated conjecture discovery a very interesting problem domain to tackle for re-
searchers wishing to push the boundaries for AI in mathematics. While there are similarities be-
tween natural languages and formal languages, it is unlikely that AI methods for NLP will apply
unmodified to mathematics. Specifically, huge amounts of natural language text data are available
on the internet for big languages like English, while for mathematical languages, specific datasets
must be collected and curated, as mathematical data typically appears in many different formats. It
may be challenging to generalise well between systems, just as it is difficult to apply some NLP-ML
methods successful on English to small spoken languages with little data. Furthermore, when start-
ing a completely new mathematical formalisation (analogous to inventing a meaning for a bunch of
new, previously unseen “words”) no example data at all will be available. Here, we need the ability
to explore and perhaps recognise analogies to other, known theories. We therefore speculate that a
good solution to the problem of interesting conjecture invention will require a combination of both
symbolic search-based methods, automated testing and machine learning.
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